Advertisement

The Evolution of Semiconductor Quantum Structures in Reduced Dimensionality — Do-It-Yourself Quantum Mechanics

  • L. Esaki
Part of the NATO ASI Series book series (NSSB, volume 231)

Abstract

Following the past twenty-year evolutionary path in the interdisciplinary research of semiconductor superlattices and other quantum structures, significant milestones are presented with emphasis on experimental achievements in the physics of reduced dimensionality associated with technological advances.

Keywords

Resonant Tunneling Negative Differential Resistance Stark Shift Resonant Tunneling Diode Double Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Esaki, R. Tsu, “Superlattice and negative conductivity in semiconductors,” IBM Research Note RC-2418 (1969).Google Scholar
  2. 3.
    D. Bohm, “Quantum Theory:” (Prentice Hall, Englewood Cliffs, N.J. 1951 ), p. 283.Google Scholar
  3. 4.
    L. Esaki, “Long journey into tunneling,” Les Prix Nobel en 1973, Imprimerie Royale, P.A. Norstedt & Soner, Stockholm 1974, p. 66.Google Scholar
  4. 5.
    L. Esaki, L.L. Chang, R. Tsu, “A one-dimensional ‘superlattice’ in semiconductors,” Proc. 12th Int. Conf. on Low Temperature Physics. Kyoto, Japan, 1970 (Keigaku Publishing Co.,Tokyo, Japan), p. 551.Google Scholar
  5. 7.
    L. Esaki, L.L. Chang, W.E. Howard, and V.L. Rideout, “Transport properties of a GaAs-GaAlAs superlattice,” Proc. 11th Int. Conf. on the Physics of Semiconductors, Warsaw, Poland, 1972, (PWN-Polish Scientific Publishers, Warsaw, Poland ), p. 431.Google Scholar
  6. 9.
    L. Esaki, “Semiconductor Superlattices and Quantum Wells,” Proc. 17th Int. Conf. on the Physics of Semiconductors. San Francisco, 1984, (Springer-Verlag, New York, 1985), p.473; IEEE J. Quantum Electron., QE-22: 1611 (1986).Google Scholar
  7. 10.
    A. C. Gossard, “Growth of Microstructures by Molecular Beam Epitaxy,” IEEE J. Quantum Electron., QE-22: 1649 (1986).Google Scholar
  8. 11.
    M. Razeghi, “The MOCVD challenge”, ( Adam Hilger, Bristol and Philadelphia, 1989 ).Google Scholar
  9. 15.
    F. Capasso, K. Mohammed, A. Y. Cho, “Resonant tunneling through double barriers,” IEEE J. Quantum Electron., QE-22: 1853 (1986).Google Scholar
  10. 18.
    M.L. Leadbeater, E.S. Alves, L. Eaves, M. Henini, O.H. Hughes, A. Celeste, J.C. Portal, G. Hill, M.A. Pate, “Magnetic field studies of elastic scattering and optic-phonon emission in resonant-tunneling devies”, Phys. Rev. B 39: 3438 (1989).ADSCrossRefGoogle Scholar
  11. 21.
    A. Tackeuchi, T. Inata, S. Muto, E. Miyauchi, “Picosecond characterization of InGaAs/InAlAs resonant tunneling barrier diode by electro-optic sampling,” Jpn. J. APPL. Phys. 28: L750 (1989).ADSCrossRefGoogle Scholar
  12. 24.
    H. Takaoka, Chin-An Chang, E.E. Mendez, L.L. Chang, L. Esaki, “GaSb-AlSb-InAs multi-heterojunctions, ” Physica 117B S118B: 741 (1983).Google Scholar
  13. 25.
    L.F. Luo, R. Beresford, W.I. Wang, “Interband tunneling in polytype heterostructures”, (to be published).Google Scholar
  14. 26.
    J.R. Soderstrom, D.H. Chow, T.C. McGill, “A new negative differential resistance device based on resonant interband tunneling” (to be published).Google Scholar
  15. 33.
    Y. Arakawa, A. Yariv, “Quantum well lasers,” IEEE J. Quantum Electron., QE-22: 1887 (1986).Google Scholar
  16. 35.
    P.L. Derry, A. Yariv, K.Y. Lau, N. Bar-Chaim, K. Lee, J. Rosenberg, “Ultralow-threshold graded-index separate-confinement single quantum well buried heterostructure (Al,Ga)As lasers with high reflectivity coatings,” Appl. Phys. Lett. 50: 1325 (1986).Google Scholar
  17. 38.
    H. Schneider, W.W. Rühle, K. v.Klitzing, K. Ploog, “Electrical and optical time-of-flight experiments in GaAs/AlAs superlattices,” Appl. Phys. Lett. 54: 2656 (1989).ADSCrossRefGoogle Scholar
  18. 39.
    E.E. Mendez, G Bastard, L.L. Chang, L. Esaki, “Effect of an electric field on the luminescence of GaAs quantum wells,” Phys. Rev. B 26: 7101 (1982).ADSCrossRefGoogle Scholar
  19. 40.
    L. Vina, R. T. Collins, E. E. Mendez, W. I. W. ng, “Excitonic coupling in GaAs/GaAlAs quantum wells in an electric field,” Phys. Rev. Lett. 58: 832 (1987).ADSCrossRefGoogle Scholar
  20. 42.
    D.A.B. Miller, J.S. Weiner, D.S. Chemla, “Electric-field dependence of linear optical properties in quantum well structures,” IEEE J. Quantum Electron., QE-22: 1816 (1987).Google Scholar
  21. 46.
    G. Abstreiter, R. Merlin, A. Pinczuk, “Inelastic light scattering by electronic excitations in semiconductor heterostructures,” IEEE J. Quantum Electron., QE-22: 1771 (1987).Google Scholar
  22. 48.
    M.V. Klein, “Phonons in semiconductor superlattices,” IEEE J. Quantum Electron., QE-22: 1760 (1987).Google Scholar
  23. 49.
    A. Fasolino, E. Marinari, J.C. Maan, “Resonant quasiconfined optical phonons in semiconductor superlattices,” Phys. Rev. B 39: 3923 (1989).ADSCrossRefGoogle Scholar
  24. 53.
    M. Abe, T. Mimura, K. Nishiuchi, A. Shibatomi, M. Kobayashi, “Recent advances in ultra-high-speed HEMT technology,” IEEE J. Quantum Electron.. QE-22: 1870 (1986).Google Scholar
  25. 62.
    H. Munekata, E.E. Mendez, Y. Iye, L. Esaki, “Densities and mobilities of coexisting electrons and holes in MBE grown GaSb-InAs-GaSb quantum well,” Surf. Sci. 174; 449 (1986).ADSCrossRefGoogle Scholar
  26. 64.
    P. Voisin, C. Delalande, M. Voos, L.L. Chang, A. Segmuller, C.A. Chang and L. Esaki, “Light and heavy valence subband reversal in GaSb-AlSb superlattices,” Phys. Rev. B 30: 2276 (1984).ADSCrossRefGoogle Scholar
  27. 66.
    B. Rockwell, H.R. Chandrasekhar, M. Chandrasekhar, F.H. Pollak, H. Shen, L.L. Chang, W.I. Wang, L. Esaki, “High pressure optical studies of GaSb-AlSb multiple quantum wells,” (to be published).Google Scholar
  28. 67.
    J.M. Hong, T.P. Smith III, K.Y. Lee, C.M. Knoedler, S.E. Laux, D.P. Kern, L. Esaki, “One- and zero- dimensional systems: fabrication and characterization,” J. Cryst. Growth, 95 266 (1989); K.Y. L. e, T.P. Smith, III, H. Arnot, C.M. Knoedler, J.M. Hong, D.P. Kern, S.E. Laux, “Fabrication and characterization of one- and zero- dimensional electron systems” J. Vac. Sci. Technol. B 6: 1856 (1988).Google Scholar
  29. (1987).
    J.M. Hong, T.P. Smith III, K.Y. Lee, C.M. Knoedler, S.E. Laux, D.P. Kern, L. Esaki, “One- and zero- dimensional systems: fabrication and characterization,” J. Cryst. Growth, 95 266 (1989); K.Y. L. e, T.P. Smith, III, H. Arnot, C.M. Knoedler, J.M. Hong, D.P. Kern, S.E. Laux, “Fabrication and characterization of one- and zero- dimensional electron systems” J. Vac. Sci. Technol. B 6: 1856 (1988).Google Scholar
  30. 75.
    D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacook, D.A. Ritchie, G.A.C. Jones, “One-dimensional transport and the quantization of the ballistic resistance,” J. Phys. C.: Solid State Phys. 21: L 209 (1988).Google Scholar
  31. 78.
    C.G. Smith, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, R. Newbury, D.C. Peacook, D. A. Ritchie, G.A.C. Jones, “One di-mensional electron tunneling and related phenomena,” (to be published).Google Scholar
  32. 85.
    A. Zrenner, H. Reisinger, F. Koch, K. Ploog, “Electron subband structure of a S(z)-doping layer in n-GaAs”, Proc. 17th Int. Conf. on the Physics of Semiconductors, San Francisco, 1984, ( Springer-Verlag, New York, 1985 ) p. 325.Google Scholar
  33. 86.
    E.F. Schubert, J.E. Cunningham, W.T. Tsang, “Realization of the Esaki-Tsu-type doping superlattice”, Phys. Rev. B 36: 1348 (1987).ADSCrossRefGoogle Scholar
  34. 87.
    E.F. Schubert, J.P. van der Ziel, J.E. Cunningham, T.D. Harris, “Tunable stimulated emission of radiation in GaAs doping superlattices”, (to be published).Google Scholar
  35. 88.
    J.H. van der Merwe, “Crystal interfaces,” J. Appl. Phys. 34: 117 (1963).Google Scholar
  36. 92.
    T. Nakazawa, H. Fujimoto, K. Imanishi, K. Taniguchi, C. Hamaguchi, S. Hiyamizu, S. S. sa, “Photoreflectance and photoluminescence study of (GaAs)m/(AlAs)5(m = 3 - 11) superlattices: direct and indirect transition”, J. Phys. Soc. Jap., 58: 2192 (1989).ADSCrossRefGoogle Scholar
  37. 93.
    R. Cingolani, M. Holtz, R. Muralidharan, K. Ploog, K. Reiman, K. Syassen, “Type I-type II transition in ultra short period GaAs/AlAs superlattices revealed by luminescence under high- excitation intensity and high-pressure”, (to be published).Google Scholar
  38. 97.
    R. Zachai, E. Friess, G. Abstreiter, E. Kasper, H. Kibbel, “Band structure and optical properties of strain symmetrized short period Si/Ge superlattices on Si (100) substrates”, Proc. of the 19th Int. Conf. on the Physics of Semiconductors, Warsaw, Poland, 1988, ( Institute of Physics, Polish Academy of Sciences ) p. 487;Google Scholar
  39. 101.
    A.V. Nurmikko, R.L. Gunshor, L.A. Kolodziejski, “Optical Properties of CdTe/CdMnTe multiple quantum wells,” IEEE J. Quantum Electron. QE-22: 1785 (1986).Google Scholar
  40. 102.
    L.L. Chang, “CdTe-CdMnTe superlattices”, Superlatt. and Microstruct. 6: 39 (1989).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • L. Esaki
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations