Biomembranes pp 251-273 | Cite as

Protein Disposition in Biological Membranes

  • Richard W. Hendler
Part of the Biomembranes book series (B, volume 5)


The history of concepts of the molecular structure of biological membranes can be divided into four phases. The first phase (~1925 to ~ 1963) saw the development and general acceptance of a membrane model in which the body of the membrane was composed of a continuous bimolecular leaflet of phospholipid. The outer surfaces of the bilayer were polar and were coated with protein held by electrostatic forces. The second or “Phospholipid Revolution” phase (~1963 to ~ 1968) questioned the basis for the concept of the phospholipid bimolecular leaflet and sought to replace this model with one in which a discontinuous phase of nestling lipoprotein subunits made up the body of the membrane. The second phase ended with the accumulation of evidence from a variety of new powerful physical methods which gave strong support for the bimolecular leaflet and extended the evidence for this structure to a variety of cell membranes. The third phase therefore marked a return to phase one insofar as the phospholipid configuration of biological membranes was concerned.


Erythrocyte Membrane Biological Membrane Polar Head Group Human Erythrocyte Membrane Submitochondrial Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bar, K. S., Deamer, D. W., Cornwell, D. G., 1966, Surface area of human erythrocyte lipids: Reinvestigation of experiments on plasma membrane, Science 153:1010.PubMedCrossRefGoogle Scholar
  2. Bender, W. W., Garan, H., and Berg, H. S., 1971, Proteins of the human erythrocyte membrane as modified by pronase, J. Mol. Biol. 58:783.PubMedCrossRefGoogle Scholar
  3. Blaurock, A. E., 1972, Locating protein in membranes, Nature 240:556.PubMedCrossRefGoogle Scholar
  4. Blaurock, A. E., 1973a, X-ray diffraction pattern from a bilayer with protein outside, Biophys. J. 13:281.PubMedCrossRefGoogle Scholar
  5. Blaurock, A. E., 1973, The structure of a lipid-cytochrome c membrane, Biophys. J. 13:290.PubMedCrossRefGoogle Scholar
  6. Blaurock, A. E., 1973c, Locating protein in membranes, Nature 244:172.PubMedCrossRefGoogle Scholar
  7. Blaurock, A. E., and Wilkins, M. H. F., 1969, Structure of frog photoreceptor membranes, Nature 223:906.PubMedCrossRefGoogle Scholar
  8. Branton, D., 1969, Membrane structure: A review, Ann. Rev. Plant Physiol. 20:209.CrossRefGoogle Scholar
  9. Bretscher, M.S., 1971a, A major protein which spans the human erythrocyte membrane, J. Mol. Biol. 59:351.PubMedCrossRefGoogle Scholar
  10. Bretscher, M. S., 1971b, Major human erythrocyte glycoprotein spans the cell membrane, Nature (New Biology) 231:229.CrossRefGoogle Scholar
  11. Bretscher, M. S., 1972, Phosphatidyl-ethanolamine: Differential labeling in intact cells and cell ghosts of human erythrocytes by a membrane- impermeable reagent, J. Mol. Biol. 71:523.PubMedCrossRefGoogle Scholar
  12. Brown, A. D., 1965, Hydrogen ion titrations of intact and dissolved lipoprotein membranes, J. Mol. Biol. 12:491.PubMedCrossRefGoogle Scholar
  13. Carraway, K. L., Kobylka, D., Summers, J., and Carraway, C. A., 1972, Chemical modification of erythrocyte membranes: Double labeling with acetic anhydride, Chem. Phys. Lipids 8:65.PubMedCrossRefGoogle Scholar
  14. Carraway, K. L., Kobylka, D., and Triplett, R. B., 1971, Surface proteins of erythrocyte membranes, Biochim. Biophys. Acta 241:934.PubMedCrossRefGoogle Scholar
  15. Das, M. L., and Crane, F. L., 1964, Proteolipids. I. Formation of phospholipid-cytochrome c complexes, Biochem. 3:696.CrossRefGoogle Scholar
  16. Das, M. L., Hirasuka, H., Machinist, J. M., and Crane, F. L., 1962, The proteolipids of cytochrome C., Biochim. Biophys. Acta 60:433.PubMedCrossRefGoogle Scholar
  17. Engelman, D. M., 1969, Surface area per lipid molecule in the intact membrane of the human red cell, Nature 223:1279.PubMedCrossRefGoogle Scholar
  18. Finean, J. B., Bramley, T. A., and Coleman, R., 1971, Lipid layer in cell membranes, Nature 229:114.PubMedCrossRefGoogle Scholar
  19. Glaser, M., Simpkins, H., Singer, S. J., Sheetz, M., and Chan, S. I., 1970, On the interactions of lipids and proteins in the red blood cell membranes, Proc. Natl. Acad. Sci. U.S. 65:721.CrossRefGoogle Scholar
  20. Green, D. E. and Fleischer, S., 1963, The role of lipids in mitochondrial electron transfer and oxidative phosphorylation, Biochim. Biophys. Acta 70:554.PubMedCrossRefGoogle Scholar
  21. Gulik-Krzywicki, T., Schechter, E., Luzzati, V., and Foure, M., 1969, Interactions of proteins and lipids: structure and polymorphism of protein-lipid-water phases, Nature 223:1116.PubMedCrossRefGoogle Scholar
  22. Hanahan, D. J., and Ekholm, J., 1972, Changes in erythrocyte membranes during preparation, as expressed by ATPase activity, Biochim. Biophys. Acta 255:413.PubMedCrossRefGoogle Scholar
  23. Hendler, R. W., 1971, Biological membrane ultrastructure: A review, Phys. Rev. 51:66.Google Scholar
  24. Hubbell, W. L. and McConnell, 1969, Orientation and motion of amphiphilic spin labels in membranes, Proc. Natl. Acad. Sci. U.S. 64:20.CrossRefGoogle Scholar
  25. Jost, P. C., Hayes Griffith, O., Capaldi, R. A., and Vanderkooi, G., 1973, Evidence for boundary lipid in membranes, Proc. Natl. Acad. Sci. U.S. 70:480.CrossRefGoogle Scholar
  26. Kant, J. A. and Steck, T. L., 1972, Cation-impermeable inside-out and right-side-out vesicles from human erythrocyte membranes, Nature (New Biology) 240:26.Google Scholar
  27. Kimelberg, H. K., and Lee, C. P., 1969, Binding and electron transfer to cytochrome c in artificial phospholipid membranes, Biochem. Biophys. Res. Comm. 34:784.PubMedCrossRefGoogle Scholar
  28. King, T. E. and Steinrauf, L. K., 1972, Stabilization of a lipid bilayer membrane by polylysine, Biochem. Biophys. Res. Comm. 49:1433.PubMedCrossRefGoogle Scholar
  29. Lenard, J. and Singer, S. J., 1966, Protein conformation in cell membrane preparations as studied by optical rotatory dispersion and circular dichroism, Proc. Natl. Acad. Sci. U.S. 56:1828.CrossRefGoogle Scholar
  30. Lenaz, G., Sechi, A. M., Masotti, L., and Castellii, P., 1969, Nonionic interaction between proteins and lipids in the mitochondrial membranes, Biochem. Biophys. Res. Comm. 34:392.PubMedCrossRefGoogle Scholar
  31. Lenaz, G., Pasquali, P., Bertoli, E., Sechi, A. M., Parenti-Castelli, G., and Masotti, L., 1972, Effect of protein binding on phospholipase C hydrolysis of aqueous phospholipid dispersions, Biochem. Biophys. Res. Comm. 49:278.PubMedCrossRefGoogle Scholar
  32. Luzzati, V., 1968, X-ray diffraction studies of lipid-water systems: A review, in: Biological Membranes (D. Chapman, ed.), p. 71, Academic Press, London.Google Scholar
  33. Mitchell, A. D. and Cross, L. C., eds. 1958, Tables of Interatomic Distances and Configuration in Molecules and Ions, Chemical Society, London.Google Scholar
  34. Nozaki, Y. and Tanford, C., 1971, The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions, J. Biol. Chem. 246:2211.PubMedGoogle Scholar
  35. Parsegian, V. A., 1967, Forces between lecithin bimolecular leaflets are due to a disordered surface layer, Science 156:939.PubMedCrossRefGoogle Scholar
  36. Parsegian, V. A., 1968, An energetic mode of ionic lipids in the liquid-crystal state, in: Membrane Models and the Formation of Biological Membranes (L. Bolis and B. A. Pethica, eds.) p. 303, North-Holland Publishing Co., Amsterdam.Google Scholar
  37. Pauling, L., 1942, The Nature of the Chemical Bond, Cornell University Press, Ithaca.Google Scholar
  38. Phillips, D. R. and Morrison, M., 1970, The arrangement of proteins in the human erythrocyte membrane, Biochem. Biophys. Res. Comm. 40:284.PubMedCrossRefGoogle Scholar
  39. Phillips, D. R. and Morrison, M., 1971, Exposed protein on the intact human erythrocyte, Biochemistry 10:1766.PubMedCrossRefGoogle Scholar
  40. Racker, E., Layter, A., and Christiansen, R. O., 1971, The two sides of the inner mitochondrial membrane, in: Probes of Structure and Function of Macromolecules and Membranes, I. Probes and membrane function (B. Chance, C-P Lee, and J. K. Blaisie, eds.), pp. 407–410, Academic Press, New York.Google Scholar
  41. Richardson, S. H., Hultin, H. O., and Green, D. E., 1963, Structural proteins of membrane systems, Proc. Natl. Acad. Sci. U.S. 50:821.CrossRefGoogle Scholar
  42. Roelofsen, B., Zwaal, R. F. A., Comfurius, P., Woodward, C. B., and Van Deenen, L. F. M., 1971, Action of pure phospholipase A2 and phospholipase C on human erythrocytes and ghosts, Biochim. Biophys. Acta 241:925.PubMedCrossRefGoogle Scholar
  43. Segrest, J. P., Jackson, R. L., Marchesi, V. T., Guyer, R. B., and Terry, W., 1972, Red cell membrane glycoprotein: Amino acid sequence of an intramembranous region, Biochem. Biophys. Res. Comm. 49:964.PubMedCrossRefGoogle Scholar
  44. Senior, A. E. and MacLennan, D. H., 1970, Mitochondrial “structural protein,” J. Biol. Chem. 245:5086.PubMedGoogle Scholar
  45. Singer, S. J., 1971, The molecular organization of biological membranes: A review, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.) pp. 146–222, Academic Press, New York.Google Scholar
  46. Singer, S. J. and Nicolson, G. R., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720.PubMedCrossRefGoogle Scholar
  47. Small, D. M., Bourges, M., and Dervichian, D. G., 1966, Ternary and quaternary aqueous systems containing bile salts, lecithin, and cholesterol, Nature 211:816.PubMedCrossRefGoogle Scholar
  48. Steck, T. L., 1972, The organization of proteins in human erythrocyte membranes, in: Membrane Research (C. F. Fox, ed.) pp. 71–93, Academic Press, New York.Google Scholar
  49. Steck, T. L., Fairbanks, G., and Wallach, D. F. H., 1971, Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection, Biochem. 10:2617.CrossRefGoogle Scholar
  50. Tanford, C., 1972, Hydrophobic free energy, micelle formation and the association of proteins with amphiphiles, J. Mol. Biol. 67:59.PubMedCrossRefGoogle Scholar
  51. Vanderkooi, G. and Green, D. E., 1970, Biological membrane structure. I. The protein crystal model for membranes, Proc. Natl. Acad. Sci. U.S. 66:615CrossRefGoogle Scholar
  52. Vanderkooi, G., Senior, A. E., Capaldi, R. A., and Hayashi, H., 1972, Biological membrane structure. III. The lattice structure of membraneous cytochrome oxidase, Biochim. Biophys. Acta 274:38.PubMedCrossRefGoogle Scholar
  53. Vanderkooi, G., and Sundaralingam, M., 1970, Biological membrane structure. II. A detailed model for the retinal rod outer segment membrane, Proc. Natl. Acad. Sci. U.S. 67:233.CrossRefGoogle Scholar
  54. Zampighi, G., and Robertson, J. D., 1973, Fine structure of the synaptic discs separated from the goldfish medulla oblongata, J. Cell Biol. 56:92.PubMedCrossRefGoogle Scholar
  55. Zwaal, R. F. A., Roelofsen, B., Comfurius, P., and Van Deenen, F. F. M. 1971, Complete purification and some properties of phospholipase C from Bacillus cereus, Biochim. Biophys. Acta 233:474.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Richard W. Hendler
    • 1
  1. 1.Laboratory of Biochemistry, Section on Cellular PhysiologyNational Heart and Lung InstituteBethesdaUSA

Personalised recommendations