Biomembranes pp 213-249 | Cite as

Radiation Effects on Biomembranes

  • Donald F. Hoelzl Wallach
Part of the Biomembranes book series (B, volume 5)


Radiation damage can be produced by directly-ionizing radiation, such as α particles, β particles, protons, etc., indirectly by γ and x rays, which cause ejection of fast electrons from target atoms, as well as by neutrons which generate recoil protons and other nuclei. In all cases the resulting charged particles excite or ionize other molecules in so-called “primary-events” (Lea, 1955). The energy of the absorbed radiation is deposited in localized, randomly distributed packages, which may be separated as much as several 1000 Å for x and γ rays or as little as a few Å for densely ionizing radiation such as α particles. About 50–100 electron volts (eV) (1200–2000 kcal/ mole) are released or transferred in gases per “primary event,” with about 34 eV required to generate an ion pair. This must be compared with an average bond energy of 3 eV. Although the energy released per “primary event” is large, few of these (~106/cell) are required to cause cell death.


Electron Spin Resonance Lipid Oxidation Radiation Effect Erythrocyte Membrane Radiation Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, G. E., McNaughton, G. S., and Michael, B. D., 1968, Pulse radiolysis of sulphur compounds, Trans. Farady Soc. 64:902.CrossRefGoogle Scholar
  2. Alexander, P., Dean, C. J., Hamilton, L. D. G., Lett, J. T., and Parkins, G., 1965, in: Cellular Radiation Biology (M. D. Anderson, ed.), p. 241, Williams and Wilkins Co., Baltimore.Google Scholar
  3. Alper, T., 1970, Cell membranes as structures responsible for the oxygen effect, in: Fourth International Congress on Radiation Research (Evian, France) p. 8.Google Scholar
  4. Andres, K. H., 1963a, Elektronenmikroskopische Ontersuchungen über Strukturveränderungen in den Kernen von Spinalganglienzellen der Ratte nach Bestrahlung mit 185 MeV-Protonen, Z. Zellforsch. 60:560.CrossRefGoogle Scholar
  5. Andres, K. H., 1963b, Elektronenmikroskopische Untersuchungen über Strukturveränderungen an den Nervenfasern in Rattenspinalganglien nach Bestrahlung mit 185 MeV-Protonen, Z. Zelljorsch. 61:1.CrossRefGoogle Scholar
  6. Andres, K. H., 1963c, Elektronenmikroskopische Untersuchungen über Strukturveränderungen an Blutgefässen und am Endoneurium in Spinalganglien von Ratten nach Bestrahlung mit 185 MeV-Protonen, Z. Zellforsch. 61:63.Google Scholar
  7. Andres, K. H., Larsson, B., and Rexed, B., 1963, Zur Morphogenese der akuten Strahlenschädigung in Rattenspinalganglien nach Bestrahlung mit 185 MeV-Protonen, Z. Zelljorsch. 60:532.CrossRefGoogle Scholar
  8. Archer, H. G., 1968, Inactivation of amino acid transport systems in ehrlich ascites carcinoma cells by cobalt-60 gamma radiation, Radiation Res. 3:109.CrossRefGoogle Scholar
  9. Augenstine, L. G., 1962, in: Ionizing Radiation and the Immune Response (C. Leone, ed.), p. 17, Gordon and Breach, New York.Google Scholar
  10. Augenstine, L. G., Carter, J. G., Nelson, D. R., and Yockey, H. P., 1960, Radiation effects at the macromolecular level, Radiation Res. Suppl. 2:19.CrossRefGoogle Scholar
  11. Bachofer, C. S., 1957, Enhanced response of nerves during irradiation, Radiation Res. 7:301.Google Scholar
  12. Bachofer, C. S., and Ganterreaux, M. E., 1959, X-ray effects on single nerve fibers, J. Gen. Physiol. 42:723.PubMedCrossRefGoogle Scholar
  13. Bacq, Z. M., and Alexander, P., 1961, in: Fundamentals of Radiobiology, 2nd ed., p. 263, Pergamon Press, New York.Google Scholar
  14. Bacq, Z. M., and Errera, M., 1958, Preliminary Report to the UN Scientific Committee on the Effects of Atomic Radiation, Document A (AC-82) 1210.Google Scholar
  15. Benesch, R. E., and Benesch, R., 1954, Radiation between erythrocyte integrity and sulfhydryl groups, Arch. Biochem. Biophys. 48:38.PubMedCrossRefGoogle Scholar
  16. Bergstrom, P. M., Blafield, R. F., and Brenner, M. W., 1960, Irradiation of single nerve fibres with α-Particles from a circular polonium210 source, Acta Physiol. Scand. 50:24.Google Scholar
  17. Berndt, J., 1969, Fettsäure-Coenzym-A-Verbindungen in der Mäuseleber nach Ganzkörperbestrahlung, Experientia 25:16.PubMedCrossRefGoogle Scholar
  18. Bianchi, M. R., Boccacci, M., Misiti Dorello, P. and Quintillani, M., 1964, Further observations on in vitro radiosensitization of rabbit erythrocytes by iodoacetic acid and related substances, Intern. J. Radiation Biol. 8:329.CrossRefGoogle Scholar
  19. Billen, D., 1957, Modification of the release of cellular constituents by irradiated E. Coli, Arch. Biochem. Biophys. 67:333.PubMedCrossRefGoogle Scholar
  20. Blumenthal, R., Changeux, J. P., and Lefever, R., 1970, Membrane excitability and dissipative instabilities, J. Membrane Biol. 2:351.CrossRefGoogle Scholar
  21. Boag, J. W., 1969, Oxygen diffusion and oxygen depletion problems in radiobiology, Curr. Top. Radiation Res. V:141.Google Scholar
  22. Braams, R., 1967, in: Radiation Research (G. Silimi, ed.), p. 371, Amsterdam, North-Holland Publishing Co.Google Scholar
  23. Brandes, D., Sloan, K. W., Anton, E., and Bloedorn, F., 1967, The effect of x-irradiation on the lysosomes of mouse mammary gland carcinomas, Cancer Res. 27:731.PubMedGoogle Scholar
  24. Branton, D., 1971, Freeze etching studies of membrane structure, Phil. Trans. B. 261:133.CrossRefGoogle Scholar
  25. Braun, H., 1967, Beiträge zur Histologie and Zytologie des destrahlten Thymus, Strahlentherapie 133:412.Google Scholar
  26. Bresciani, F., Aurichio, F., and Fiore, C., 1964, Effect of x-rays on movements of sodium in human erythrocytes, Radiation Res. 21:394.PubMedCrossRefGoogle Scholar
  27. Bruce, H. N., 1958, Response of potassium retentivity and survival of yeast to far ultraviolet, near ultraviolet, visible, and x-irradiation, J. Gen. Physiol. 41:693.PubMedCrossRefGoogle Scholar
  28. Bunyan, J., Green, J., Edwin, E. E., and Diplock, A. T., 1960, Studies on vitamin E. III. The relative activities of tocopherols and some other substances in vitro and in vivo against dialuricacid-induced hemolysis of erythrocytes, Biochem. J. 75:460.PubMedGoogle Scholar
  29. Chance, B., 1957, Cellular oxygen requirements, Federation Proc. 16:671.Google Scholar
  30. Changeux, J. P., and Thiery, J., 1968, On the excitability and cooperativity of biological membranes, in: Regulatory Functions of Biological Membranes (J. Jarnefelt, ed.), Elsevier, Amsterdam.Google Scholar
  31. Changeux, J. P., Tung, Y., and Kittel, C., 1967, On the cooperativity of biological membranes, Proc. Natl. Acad. Sci. U.S. 57:335.CrossRefGoogle Scholar
  32. Chapman, J. D., Sturrock, J., Boag, J. W., and Crookall, J. O., 1970, Factors affecting the oxygen tension around cells growing in plastic petri dishes, Intern. J. Radiation Biol. 17:305.CrossRefGoogle Scholar
  33. Cividalli, G., 1963, Effect of gamma irradiation on glucose utilization glutathione and electrolyte content of the human erythrocyte, Radiation Res. 20:564.PubMedCrossRefGoogle Scholar
  34. Comings, D. E., and Kakefuda, T. J., 1968, Initiation of deoxyribonucleic acid replication at the nuclear membrane in human cells, J. Mol. Biol. 33:225PubMedCrossRefGoogle Scholar
  35. Comings, D. E., and Okada, T. A., 1970, Association of chromatin fibers with the annuli of the nuclear membrane, Exp. Cell Res. 62:293.PubMedCrossRefGoogle Scholar
  36. Cook, J. S., 1965, The quantitative interrelationship between ion fluxes, cell swelling and radiation dose in U.V. hemolysis, J. Gen. Physiol. 48:719.PubMedCrossRefGoogle Scholar
  37. Damjanovich, S., Sanner, T., and Pihl, A., 1967, Preferential protection of the regulatory function of Phosphorylase b against x-ray inactivation in solution, Biochem. Biophys. Acta 136:593.PubMedCrossRefGoogle Scholar
  38. Dewey, D. L., and Boag, J. W., 1959, Modification of the oxygen effect when bacteria are given large pulses of irradiation, Nature 183:1450.PubMedCrossRefGoogle Scholar
  39. Dewey, D. L., and Boag, J. W., 1960, The inactivation of bacteria by means of single electron impulses, Z. Naturforsch. (B) 15B:372.Google Scholar
  40. Dickens, E. A., and Shapiro, B., 1960, Protein binding of AET and its alteration by ionizing radiation, USA F Sch. Aviat. Med. 60:1.Google Scholar
  41. Donaldson, D. M., Marcus, S., Gyi, K. K., and Perkins, E. H., 1956, Influence of total body x-irradiation on intracellular digestion by peritoneal macrophages, J. Immunol. 76:192.PubMedGoogle Scholar
  42. Erberhagen, D. and Remler, U., 1967, Die Lipoidveränderungen in verschiedenen Rattenorganen nach Ganzkörperbestrahlung mit letalen Röntgendosen, Strahlenterapie 132:441.Google Scholar
  43. Eberhagen, D., and Horn, U., 1968, Die Lipoidveränderungen in verschiedenen Rattenorganen nach Ganzkörperbestrahlung mit letalen Röntgendosen, Strahlenterapie 135:364.Google Scholar
  44. Eibl, H., Hill, E. E., and Lands, W. E. M., 1969, The subcellular distribution of acyltransferases which catalyze the synthesis of phosphoglycerides, Eur. J. Biochem. 9:250.PubMedCrossRefGoogle Scholar
  45. Ellinwood, L. E., Wilson, J. E., and Coon, M. J., 1957, Release of potassium from the x-irradiated mammalian heart, Proc. Soc. Exp. Biol. Med. 94:129.PubMedGoogle Scholar
  46. Epp, E. R., Weiss, H., and Santomasso, A., 1969, The survival of bacterial cells pulse irradiated under various oxygen concentrations, Ann. N.Y. Acad. Sci. 161:337.PubMedCrossRefGoogle Scholar
  47. Feldherr, C. M., 1969, A comparative study of nucleocytoplasmic interactions, J. Cell Biol. 42:841.PubMedCrossRefGoogle Scholar
  48. Ferber, E., Munder, P. G., Kohlschutter, A., and Fischer, H., 1968, Lysoleci-thin-Stoffwechsel in Erythrocytenmembranen. Lysolecithin-Acylierung und Lysophospholipase in alternden Erythrocyten, Eur. J. Biochem. 5: 395.PubMedCrossRefGoogle Scholar
  49. Flemming, K., 1963, Modellversuche zum chemischen Strahlenschutz. III. Schutzwirkung nichtreduzierender Stoffe gegen Permeabilitätsstörungen bei Röntgenbestrahten Erythrozyten, Strahlentherapie 120:456.PubMedGoogle Scholar
  50. Flemming, K., and Langendorff, M., 1965, Untersuchungen über einen biologischen Strahlenschutz; 66. Mitteilung: Das Pro-östrogen Chlorotriani-sene (Tace) als Strahlenschutzsubstanz, Strahlentherapie 128: 109.Google Scholar
  51. Flemming, K., Mehrishi, J. N., and Napier, J. A. F., 1968, The loss of intracellular K+ ions from the intact ehrlich ascites carcinoma cell following irradiation with 15 MeV electrons and x-rays, Intern. J. Radiation Biol. 14:175.CrossRefGoogle Scholar
  52. Gaffey, C. T., 1971, Electrophysiologic responses of sciatic nerves exposed to 200-kV x-rays and 47.5 MeV protons, Advan. Biol. Med. Phys. 13:351.Google Scholar
  53. Gallily, R., and Feldman, M., 1967, The role of macrophages in the induction of antibody in x-irradiated animals, Immunol. 12:197.Google Scholar
  54. Garrison, W. M., and Weeks, B. H., 1962, Radiation chemistry of compounds containing the peptide bond, Radiation Res. 17:341.PubMedCrossRefGoogle Scholar
  55. Gordy, W., and Miagawa, I., 1960, Electron spin resonance studies of mechanisms from chemical protection from ionizing radiation, Radiation Res. 12:211.PubMedCrossRefGoogle Scholar
  56. Hageman, R. F., and Evans, T. C., 1967, The effect of x-radiation on glycine transport in ehrlich ascites tumor cells, Radiation Res. 31:618.Google Scholar
  57. Hageman, R. F., and Evans, T. C., 1968, The effect of x-radiation on glycine transport in ehrlich ascites tumor cells, Radiation Res. 33:371.CrossRefGoogle Scholar
  58. Hageman, R. F., and Evans, T. C., 1970, The temporal course of radiation effect on glycine transport in ascites tumor cells, Intern. J. Radiation Biol. 17:401.CrossRefGoogle Scholar
  59. Hanstein, W. G., and Hatefi, Y., 1970, Lipid oxidation in biological membranes. II. Kinetics and mechanism of lipid oxidation in submitochondrial particles, Arch. Biochem. Biophys. 138:87.PubMedCrossRefGoogle Scholar
  60. Harris, J. W., 1966, Factors influencing the apparent radiosensitivity and heat stability of isolated leucocyte lysosomes, J. Radiation Biol 11:465.CrossRefGoogle Scholar
  61. Hatefi, Y., and Hanstein, W. G., 1969, Solubilization of particulate proteins and nonelectrolytes by chaotropic agents, Proc. Natl. Acad. Sci. U.S. 62:1129.CrossRefGoogle Scholar
  62. Hatefi, Y., and Hanstein, W. G., 1970, Lipid oxidation in biological membranes. I. Lipid oxidation in submitochondrial particles & microsomes induced by chaotropic agents, Arch. Biochem. Biophys. 138:73.PubMedCrossRefGoogle Scholar
  63. Heston, W. E., and Pratt, A. W., 1959, Effect of concentration of oxygen on occurrence of pulmonary tumors in strain A mice, J. Natl. Cancer Inst. 22:707.PubMedGoogle Scholar
  64. Hill, T. L., and Chen, Yi-Der, 1971, On the theory of ion transport across the nerve membrane. III. Potassium ion kinetics and cooperativity (with x = 4, 6, 9), Proc. Natl. Acad. Sci. U.S. 68:2488.CrossRefGoogle Scholar
  65. Howard-Flanders, P., and Moore, D., 1958, Time interval after pulsed irradiation within which injury to bacteria can be modified by dissolved oxygen. I. A search for an effect of oxygen 0.02 second after pulsed irradiation, Radiation Res. 9:423.CrossRefGoogle Scholar
  66. Isomaki, A. M., Bergstrom, R. M., and Kivalo, E., 1962, Ultrastructural changes in the sensory nerves of the skin of the frog (Rana temporaria) after circumscript irradiation with Po210 α particles (5.3 MeV), Arch. Pathol. Microbiol. Scand. 54:190.CrossRefGoogle Scholar
  67. Jackson, K. L., and Christensen, G. M.I., 1966, Sodium and potassium binding in x-irradiated nuclei, Radiation Res. 27:434.PubMedCrossRefGoogle Scholar
  68. Jacob, H. S., and Jande, J. H., 1962, Effects of sulphhydryl inhibition on red blood cells, J. Clin. Invest. 41:779, 1514.PubMedCrossRefGoogle Scholar
  69. Jacob, H. S., and Lux, S. E., 1968, Degradation of membrane phospholipids and thiols in peroxide hemolysis: Studies in vitamin E deficiency, Blood 32:549.PubMedGoogle Scholar
  70. Jacob, H. S., Ingbar, S. H., and Jandl, J. H., 1969, Oxidative hemolysis in hereditary acatalasia, J. Clin. Invest. 44:779.Google Scholar
  71. Joanny, P., Corriol, J., and Brue, F., 1970, Hyperbaric oxygen effects on metabolism and ionic movement in cerebral cortex slices, Science 167:1508.PubMedCrossRefGoogle Scholar
  72. Kagan, E. H., Brownson, R. H., and Suter, D. B., 1962, Radiation-caused cytochemical changes in neurons, Arch. Pathol. 74:195.PubMedGoogle Scholar
  73. Kampschmidt, R. F., and Wells, D., 1968, Acid hydrolase activity during the growth, necrosis and regression of the hensen sarcoma, Cancer Res. 28:1938.PubMedGoogle Scholar
  74. Kankura, T., Nakamura, W., Etō, H., and Nakao, M., 1969, Effect of ionizing radiation on passive transport of sodium ion into human erythrocytes, Intern. J. Radiation Biol. 15:125.CrossRefGoogle Scholar
  75. Kay, R. E., and Bean, R. C., 1970, Effects of radiation on artificial lipid membranes, Advan. Biol. Med. Phys. 13:235.Google Scholar
  76. Kepner, G. R., and Macey, R. I., 1968, Membrane enzyme systems. Molecular size determinations by radiation inactivation, Biochim. Biophys. Acta. 163:188.PubMedCrossRefGoogle Scholar
  77. Kety, S. S., 1957, Determinants of tissue oxygen tension, Federation Proc. 16:666.Google Scholar
  78. Koch, R., and Monig, H., 1964, Electron spin resonance investigations of ultra-violet and x-irradiated bovine serum albumin, Nature 203:859.PubMedCrossRefGoogle Scholar
  79. Kollmann, G., and Shapiro, B., 1966, The mechanism of action of AET. VI. The protection of proteins against ionizing radiation by GED, Radiation Res. 21:414.Google Scholar
  80. Lea, D. E., 1955, Actions of Radiations on Living Cells, Cambridge University Press, Cambridge, England.Google Scholar
  81. Lehman, F., and Wels, P., 1926, Effect of roentgen rays on the permeability of red blood cells for erythrocytes, Arch. ges. Physiol. 213:628.CrossRefGoogle Scholar
  82. Liechti, A., and Wilbrandt, W., 1941, Untersuchungen über die Strahlenhämolyse. I. Hämolyse durch Röntgenstrahlen, Strahlentherapie 70:541.Google Scholar
  83. Makakis, P., and Tappel, A. L., 1960, Products of α-irradiation of cysteine and cystine, J. Am. Chem. Soc. 82:1613.CrossRefGoogle Scholar
  84. Masurovsky, E. B., and Bunge, R. P., 1970, Fission neutron effects on myelin sheaths in cultured nervous tissues, Phys. Med. Biol. 15:207.Google Scholar
  85. Maul, G. G., Price, J. W., and Lieberman, M. W., 1971, Formation and distribution of nuclear pore complexes in interphase, J. Cell Biol. 51:405.PubMedCrossRefGoogle Scholar
  86. Mee, L. K., and Adelstein, S. J., 1967, Physical, chemical, and enzymatic properties of ribonuclease s-Peptide x-irradiated in solution, Radiation Res. 32:93.PubMedCrossRefGoogle Scholar
  87. Mezick, J. A., Settlemire, C. T., Brierly, G. P., Barefield, K. P. Jensen, W. M., and Cornwell, D. G., 1970, Erythrocyte membrane interactions with menadione and the mechanism of menadione-induced hemolysis, Biochem. Biophys. Acta 219:361.PubMedCrossRefGoogle Scholar
  88. Mishell, R. I., and Dutton, R. W., 1967, Immunization of dissociated spleen cell cultures from normal mice, J. Exp. Med. 126:423.PubMedCrossRefGoogle Scholar
  89. Mitchison, N. A., 1969, The immunogenic capacity of antigen taken up by peritoneal exudate cells, Immunol. 16:1.Google Scholar
  90. Moor, H., 1971, Recent progress in freeze etching technique, Phil. Trans. B. 261:121.CrossRefGoogle Scholar
  91. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C., 1964, Formation and properties of bimolecular lipid membranes, Recent Progr. Surface Sci. 1:379.Google Scholar
  92. Munder, P., Modollel, M., and Wallach, D. F. H., 1971, Cell propagation on films of polymeric fluorocarbon: A means for the regulation of pH, pO2 and pCO2 in cultured monolayers, FEBS Let. 15:191.CrossRefGoogle Scholar
  93. Myers, D. K., 1970, Some aspects of radiation effects on cell membranes, Advan. Biol. Med. Phys. 13:219.Google Scholar
  94. Myers, D. K., and Bide, R. W., 1966, Biochemical effects of x-irradiation on erythrocytes, Radiation Res. 27:250.CrossRefGoogle Scholar
  95. Myers, D. K., and Bide, R. W., 1967, Effect of thiol-masking agents on the stromata of rat erythrocytes, Can. J. Biochem. 45:19.CrossRefGoogle Scholar
  96. Myers, D. K., and Church, M. L., 1967, Inhibition of stromal enzymes by x-radiation, Nature 213:636.PubMedCrossRefGoogle Scholar
  97. Myers, D. K., and Levy, L., 1964, Adenosine-triphosphatase and potassium retention in x-irradiated erythrocytes, Nature 204:1324.PubMedCrossRefGoogle Scholar
  98. Myers, D. K., and Skov, K., 1966, Nucleic acid synthesis in x-irradiated thymocytes, Can. J. Biochem. 44:839.PubMedCrossRefGoogle Scholar
  99. Myers, D. K., and Slade, D. E., 1967, Radiosensitization of mammalian cells by iodoacetamide and related compounds, Radiation Res. 30:186.PubMedCrossRefGoogle Scholar
  100. Myers, D. K., and Sutherland, 1962, Effect of temperature on the radiosensitivity of rat thymocytes, Can. J. Biochem. 40:413.PubMedGoogle Scholar
  101. Myers, D. K., DeWolfe, D. E., Araki, K., and Arkinstall, W. W., 1963, Loss of soluble materials from irradiated thymocytes in vitro, Can. J. Biochem. 41:1181.CrossRefGoogle Scholar
  102. Myers, D. K., Tribe, T. A., and Mortimer, R., 1969, On the radiation-induced reaction of iodoacetamide with albumin and with the erythrocyte membrane, Radiation Res. 40:580.PubMedCrossRefGoogle Scholar
  103. Naaken, F., 1966, Radiation damage to erythrocyte membranes and its modification, Strahlentherapie 129:586.Google Scholar
  104. Ord, M. G., and Stocken, L. A., 1958, Deoxyribotide accumulation in rat thymus after x-radiation, Biochim. Biophys. Acta 29:201.PubMedCrossRefGoogle Scholar
  105. Ord, M. G., and Stocken, L. A., 1961, in: Mechanisms in Radiobiology, Vol. I. (M. Errera and A. Forssber, eds.), p. 259, Academic Press, New York and London.Google Scholar
  106. Packer, D., Deamer, D. W., and Heath, R. L., 1967, Regulation and deterioration of structure in membranes, Advan. Gerontal. Res. 2:77.Google Scholar
  107. Paris, J. E., and Brandes, D., 1971, Effect of x-irradiation on the functional status of lysosomal enzymes of mouse mammary gland carcinomas, Cancer Res. 31:392.PubMedGoogle Scholar
  108. Perris, A. D., and Myers, D. K., 1965, An effect of sugars on fluid entry into erythrocytes, Nature 207:986.PubMedCrossRefGoogle Scholar
  109. Philpot, J. St. L., 1963, The estimation and identification of organic peroxides, Radiation Res. Suppl. 3:55.CrossRefGoogle Scholar
  110. Pick, J., 1965, The fine structure of sympathetic neurons in x-irradiated frogs, J. Cell Biol. 26:335.PubMedCrossRefGoogle Scholar
  111. Pitcock, J. A., 1962, An electron microscopic study of acute radiation injury of the rat brain, Lab. Invest. 11:32.Google Scholar
  112. Plaine, H. L., 1959, The effect of oxygen of hydrogen peroxide on the action of a specific gene and on tumor induction in drosophila melanogaster, Genet. 40(2):268.Google Scholar
  113. Plaine, H. L., and Glass, B., 1952, The effect of oxygen concentration upon the induction by x-rays of melanotic tumors in drosophila melanogaster, Cancer Res. 12:829.PubMedGoogle Scholar
  114. Politzer, I. R., Griffin, G. W., and Laseter, J. L., 1971, Singlet oxygen and biological systems, Chemicobiol. Interactions 3:73.CrossRefGoogle Scholar
  115. Pribnow, J. F., and Silverman, J., 1967, Studies on the radiosensitive phase of the primary antibody response in rabbits. I. The role of the macrophage, J. Immunol. 98:225.PubMedGoogle Scholar
  116. Rega, A. F., Rothstein, A., and Weed, R. I., 1967, Erythrocyte membrane sulfhydryl groups and the active transport of cations, J. Cell Physiol. 70:45.PubMedCrossRefGoogle Scholar
  117. Roseman, J., 1969, X-ray resistant cell required for the induction of in vitro antibody formation, Science 165:1125.PubMedCrossRefGoogle Scholar
  118. Rothenberg, J., 1950, Studies on permeability in relation to nerve function. II. Ionic movements across axonal membranes, Biochim. Biophys. Acta 4:96.PubMedCrossRefGoogle Scholar
  119. Ryter, A., 1969, Association of the nucleus and the membrane of bacteria: A morphological study, Bacteriol. Rev. 32:39.Google Scholar
  120. Sanders, R. T., and Giese, A. C., 1959, The effect of ultraviolet light on the sodium and potassium composition of resting yeast cells, J. Gen. Physiol. 42:589.PubMedCrossRefGoogle Scholar
  121. Schubert, J., and Sanders, E. B., 1971, Cytotoxic radiolysis products of irradiated α, β-unsaturated carbonyl sugars as the carbohydrates, Nature (New Biology) 233:199.CrossRefGoogle Scholar
  122. Seymour, R., and Dawson, K. B., 1967, Variation in the response threshold to electrical excitation of x-irradiated isolated frog nerve with dose-dose rate, Intern. J. Radiation Biol. 12:1.CrossRefGoogle Scholar
  123. Shapiro, B., and Kollmann, G., 1968, The nature of the membrane injury in irradiated human erythrocytes, Radiation Res. 34:335.PubMedCrossRefGoogle Scholar
  124. Shapiro, B., Kollmann, G., and Ashen, J., 1966, Mechanism of the effect of ionizing radiation on sodium uptake of human erythrocytes, Radiation Res. 27:139.CrossRefGoogle Scholar
  125. Shapiro, B., Kollmann, G., and Martin, D., 1970, The diversity of sulfhydyl groups in the human erythrocyte membrane, J. Cell Physiol. 75:281.PubMedCrossRefGoogle Scholar
  126. Sheppard, C. W., and Steward, M., 1952, Symposium on physiological effects of radiation at cellular level: Direct effects of radiation on erythrocytes, J. Cell Comp. Physiol. 39:188, Suppl. 2.CrossRefGoogle Scholar
  127. Siegel, S. J., and Swenson, P. A., 1964, Loss of amino acid and nucleotide pool components following exposure to ultraviolet and photoreactivating radiation, J. Cell Comp. Physiol. 63:253.CrossRefGoogle Scholar
  128. Simili, G., 1967, Radiation Research, North-Holland Publishing Co., Amsterdam.Google Scholar
  129. Slobodian, E., Newman, W., Fleischer, M., and Rubenfeld, S., 1965, Modification of ribonuclease structure by gamma irradiation, Biochim. Biophys. Acta 111:181.PubMedCrossRefGoogle Scholar
  130. Stocken, L. A., 1959, some observations on the biochemical effects of x-Radiation Radiation Res. Suppl. 1:53.CrossRefGoogle Scholar
  131. Streffer, C., 1969, Strahlenbiochemie, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  132. Streffer, C., Melchius, H. J., and Mattausch, H., 1966, Untersuchungen liber biologischen Strahlenschutz. 70. Zur Taurinausscheidung der Maus nach Ganzkörperbestrahlung und ihrer Beeinflussung durch Strahlenschutz-Substanzen, Strahlentherapie 130:146.PubMedGoogle Scholar
  133. Sutherland, R. M., and Pihl, A., 1968, Repair of radiation damage to erythrocyte membranes: The reduction of radiation-induced disulfide groups, Radiation Res. 34:300.PubMedCrossRefGoogle Scholar
  134. Sutherland, R. ML, Stannard, J. N., and Weed, R. I., 1967, Involvement of sulfhydryl groups in radiation damage to the human erythrocyte membrane, Intern. Radiation Biol. 12:551.CrossRefGoogle Scholar
  135. Swingle, K. F., and Cole, L. J., 1968, in: Current Topics in Radiation Research, Vol. 4, (M. Ebert and A. Howard, eds.), p. 191, North-Holland Publishing Co., Amsterdam.Google Scholar
  136. Taliaferro, W. H., Taliaferro, L. G., and Jarostow, B. N., 1964, Radiation and Immune Mechanism, Academic Press, New York.Google Scholar
  137. Tappel, A., Savant, P., and Shibko, S., 1963, Lysosomes: Distribution in animals hydrolytic capacity and other properties, in: Ciba Foundation Symposium on Lysosomes (A. de Reuck and M. Cameron, eds.), pp. 78–108, Little Brown and Co., Boston.CrossRefGoogle Scholar
  138. Ting, T. P., and Zirkle, R. E., 1940, Nature and cause of hemolysis produced by x-rays, J. Cell Comp. Physiol. 16:197.CrossRefGoogle Scholar
  139. Tsen, C. C., and Collier, J. B., 1960a, The protective action of tocopherol against hemolysis of rat erythrocytes by dialauric acid, Can. J. Biochem. 38:957.PubMedCrossRefGoogle Scholar
  140. Tsen, C. C., and Collier, J. B., 1960b, The relationship between the glutathione content of rat erythrocytes and their hemolysis by various agents in vitro, Can. J. Biochem. 38:981.CrossRefGoogle Scholar
  141. Vanstveninck, J., Weed, R., and Rothstein, A., 1965, Localization of erythrocyte membrane sulfhydryl groups essential for glucose transport, J. Gen. Physiol. 48:617.CrossRefGoogle Scholar
  142. Wallach, D. F. H., 1969, Membrane lipids and the conformations of membrane proteins, in: Membrane Proteins, Proceedings of a Symposium Sponsored by the New York Heart Association, November 29–30, 1968, J. Gen. Physiol. 54, Part 2.Google Scholar
  143. Wallach, D. F. H., 1972, The disposition of proteins in the plasma membranes of animal cells: Analytical approaches using controlled peptidolysis and protein labels, Biochim. Biophys. Acta 265:61.PubMedCrossRefGoogle Scholar
  144. Watkins, D. K., 1970, High oxygen effect for the release of enzymes from isolated mammalian lysosomes after treatment with ionizing radiation, Biol. Med. Phys. 13:289.Google Scholar
  145. Wills, E. D., 1966, The effect of irradiation on subcellular components. Metal ion transport in mitochondria, Intern. J. Radiation Biol. 11:517.CrossRefGoogle Scholar
  146. Wills, E. D., 1969a, Lipid peroxide formation in microsomes, Biochem. J. 113:315.PubMedGoogle Scholar
  147. Wills, E. D., 1969b, Lipid peroxide formation in microsomes, Biochem. J. 113:324.Google Scholar
  148. Wills, E. D., 1969c, Lipid peroxide formation in microsomes, Biochem. J. 113:333.PubMedGoogle Scholar
  149. Wills, E. D., 1970, Effects of irradiation on subcellular components. 1. Lipid peroxide formation in the endoplasmic reticulum, Intern. J. Radiation Biol. 17:217.CrossRefGoogle Scholar
  150. Wills, E. D., and Wilkinson, A. E., 1966, The effect of irradiation on subcellular components. Metal ion transport in mitochondria, Intern. J. Radiation Biol. 11:517.CrossRefGoogle Scholar
  151. Wills, E. D., and Wilkinson, A. E., 1970, Effects of irradiation on subcellular components. II. Hydroxylation in the microsomal fraction, Intern. J. Radiation Biol. 17:229.CrossRefGoogle Scholar
  152. Zemeno, A., and Cole, A., 1969, Radiosensitive structure of metaphase and interphase hamster cells as studied by low-voltage electron beam irradiation, Radiation Res. 39:669.CrossRefGoogle Scholar
  153. Zicha, B., Benes, J., and Dienstbier, Z., 1966, Enhancement of oxidation products of lipids in liver mitochondria of whole-body irradiated rats, Experientia 22:712.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Donald F. Hoelzl Wallach
    • 1
  1. 1.Division of RadiobiologyTufts-New England Medical CenterBostonUSA

Personalised recommendations