Biomembranes pp 147-211 | Cite as

Protein Synthesis by Membrane-Bound Polyribosomes

  • Richard W. Hendler
Part of the Biomembranes book series (B, volume 5)


The involvement of membranes in protein synthesis is indicated by theoretical considerations and a wide variety of experimental findings. Complex metabolic pathways such as are utilized for oxidative phosphorylation and macromolecular biosynthesis require the integration in time and location of many cofactors, enzymes, and the products of enzyme reactions which are used as substrates for sequential enzymes in the series. These considerations have been appreciated for many years in the field of oxidative, phosphorylation. Protein synthesis, which requires the same kind of complex interaction of many essential components, could be thought to depend only on random collisions of soluble reactants and catalysts with a free suspension of polyribosomes. To be productive, however, these collisions cannot be just those resulting from mutual contact, but must be of the kind, in which for example, the anticodon of the correct aminoacyl tRNA is brought into the required alignment with the next codon of mRNA to be translated.


Protein Synthesis Ribosomal Subunit Contact Inhibition Smooth Endoplasmic Reticulum Free Ribosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, M., 1962, Contact-dependent behavior of normal cells and the possible significance of surface changes in virus-induced transformation, in Basic Mechanisms in Animal Virus Biology, Cold Spring Harbor Symp. on Quant. Biol. 27:427.Google Scholar
  2. Abercrombie, M., and Ambrose, E. J., 1962, The surface properties of cancer cells: A review, Cancer Res. 22:525.PubMedGoogle Scholar
  3. Abercrombie, M., and Heaysman, J. E. M., 1954, Social behavior of cells in tissue culture. II. “Monolayering” of fibroblasts, Exp. Cell Res. 6:293.PubMedCrossRefGoogle Scholar
  4. Adamson, L. F., Herington, A. C., and Bornstein, J., 1972, Evidence for the selection by the membrane transport system of intracellular or extracellular amino acids for protein synthesis, Biochim, Biophys. Acta 282:352.CrossRefGoogle Scholar
  5. Adelman, M. R., Sabatini, D. D., and Blobel, G., 1973, Ribosome-membrane interaction: nondestructive dissassembly of rat liver rough microsomes into ribosomal and membranous components, J. Cell Biol. 56:206.PubMedCrossRefGoogle Scholar
  6. Agranoff, B. W., 1970, Protein synthesis and memory formation, in: Protein Metabolism of the Nervous System (A. Lajtha, ed.), pp. 533–541, Plenum Press, New York.CrossRefGoogle Scholar
  7. Agranoff, B. W., Davis, R. E., and Brink, J. J., 1966, Chemical studies on memory fixation in goldfish, Brain Res. 1:303.PubMedCrossRefGoogle Scholar
  8. Alpers, D. H., and Thier, S. O., 1972, Role of the free amino acid pool of the intestine in protein synthesis, Biochim, Biophys. Acta 262:535.CrossRefGoogle Scholar
  9. Almendinger, R., and Hager, L. P., 1972, Role for endonuclease I in the transmission process of colicin E2, Nature (New Biology) 235:199.Google Scholar
  10. Andrews, T. M., and Tata, J. R., 1971a, Protein synthesis by membrane-bound and free ribosomes of secretory and nonsecretory tissues, Biochem. J. 121:683.PubMedGoogle Scholar
  11. Andrews, T. M., and Tata, J. R., 1971b, Protein synthesis by membrane-bound and free ribosomes of the developing rat cerebral cortex, Biochem. J. 124:883.PubMedGoogle Scholar
  12. Aronson, A. I., and Wilt, F. H., 1969, Properties of nuclear RNA in sea urchin embryos, Proc. Natl. Acad. Sci. U.S. 62:186.CrossRefGoogle Scholar
  13. Austin, L., and Morgan, I. G., 1967, Incorporation of 14C-labeled leucine into synaptosomes from rat cerebral cortex in vitro, J. Neurochem. 14:337.Google Scholar
  14. Austin, L., Morgan, I. G., and Bray, J. J., 1968, The biosynthesis of proteins without axons and synaptosomes, in: Protein Metabolism of the Nervous System (A. Lajtha, ed.), pp. 271–287, Plenum Press, New York.Google Scholar
  15. Autilio, L. A., Appel, S. H., Pettis, P., and Gambetti, P-L., 1968, Biochemical studies of synapses in vitro. I. Protein synthesis, Biochem. 7:2615.CrossRefGoogle Scholar
  16. Bandyopadhyay, A. K., and Deutscher, M. P., 1973, Lipids associated with the aminoacyl transfer RNA synthetase complex, J. Mol. Biol. 74:257.PubMedCrossRefGoogle Scholar
  17. Barondes, S. H., 1970, Is the amnesic effect of cycloheximide due to specific interference with a process in memory storage?, in: Protein Metabolism of the Nervous System (A. Lajtha, ed.), pp. 545–553, Plenum Press, New York.CrossRefGoogle Scholar
  18. Barondes, S. H., and Cohen, H. D., 1966, Puromycin effect on successive phases of memory storage, Science 151:594.PubMedCrossRefGoogle Scholar
  19. Barondes, S. H., and Cohen, H. D., 1967, Delayed and sustained effect of acetoxycycloheximide on memory in mice, Proc. Natl. Acad. Sci. U.S. 58:157.CrossRefGoogle Scholar
  20. Beppu, T., and Arima, K., 1972, Dissociating activity of purified colicin E2 on the isolated DNA-membrane complex of Escherichia coli, Biochim. Biophys. Acta 262:453.PubMedCrossRefGoogle Scholar
  21. Bleiberg, I., Zauderer, M., and Baglioni, C., 1972, Reversible disaggregation by NaF of membrane-bound polyribosomes of mouse myeloma cells in tissue culture, Biochim. Biophys. Acta 269:453.PubMedCrossRefGoogle Scholar
  22. Blobel, G., and Potter, V. R., 1967, Studies on free and membrane-bound ribosomes in rat liver. I. Distribution as related to total cellular RNA, J. Mol. Biol. 26:279.PubMedCrossRefGoogle Scholar
  23. Blobel, G., and Sabatini, D. D., 1970, Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes, J. Cell Biol. 45:130.PubMedCrossRefGoogle Scholar
  24. Blyth, C.A., Freedman, R. B., and Rabin, B. R., 1971, Sex specific binding of steoid hormones to microsomal membranes of rat liver, Nature (New Biology) 230:137.Google Scholar
  25. Bolton, E. T., Britten, R. J., Cowie, D. B., McCarthy, B. J., McQuillen, K., and Roberts, R. B., 1959, in: Carnegie Institution of Washington Yearbook 58, pp.259–305, The Lord Baltimore Press, Inc., Baltimore.Google Scholar
  26. Boon, T., 1971, Inactivation of ribosomes in vitro by colicin E3 Proc. Natl. Acad. Sci. U.S. 68:1971.CrossRefGoogle Scholar
  27. Boon, T., 1972, Inactivation of ribosomes in vitro by colicin E3 and its mechanism of action, Proc. Natl. Acad. Sci. U.S. 69:549.CrossRefGoogle Scholar
  28. Boquet, P. L., Devynck, M-A., Aurelle, H., and Fromageot, P., 1971, On the bactericidal action of levallorphan—Irreversible alterations of the plasmic membrane, Eur. J. Biochem. 21:536.PubMedCrossRefGoogle Scholar
  29. Bowman, C. M., Dahlberg, J. E., Ikemura, T., Koninsky, J., and Nomura, M., 1971a, Specific inactivation of 16s ribosomal RNA induced by colicin E3 in vivo, Proc. Natl. Acad. Sci. U.S. 68:964.CrossRefGoogle Scholar
  30. Bowman, C. M., Sidikaro, J., and Nomura, M., 1971b, Specific inactivation of ribosomes by colicin E3 in vitro and mechanism of immunity in colicinogenic cells, Nature (New Biology) 234:133.Google Scholar
  31. Burke, G. T., and Redman, C. M., 1972, A test for in vitro recombination of hepatic ribosomes with membrane fractions, Federation Proc. 31:844, Abstract #3558.Google Scholar
  32. Burke, G. T., and Redman, C. M., 1973, The distribution of radioactive peptides synthesized by polysomes and ribosomal subunits combined in vitro with microsomal membranes, Biochim. Biophys. Acta 299:312.PubMedCrossRefGoogle Scholar
  33. Cohen, H. D., and Barondes, S. H., 1966, Further studies of learning and memory after intracerebral actinomycin-D, J. Neurochem. 13:207.PubMedCrossRefGoogle Scholar
  34. Cohen, H. D., and Barondes, S. H., 1967, Puromycin effect on memory may be due to occult seizures, Science 157:333.PubMedCrossRefGoogle Scholar
  35. Cohen, H. D., Ervin, F., and Barondes, S. H., 1966, Puromycin and cycloheximide: Different effects on hippocampal electrical activity, Science 154:1551.CrossRefGoogle Scholar
  36. Cornudella, L., Faiferman, I., and Pogo, A. D., 1973, Polyadenylic acid sequences in ascites cells nuclear particles and membrane-bound messenger RNA, Biochim. Biophys. Acta 294:541.PubMedCrossRefGoogle Scholar
  37. Coukell, M. B., and Polglase, W. J., 1970, Deficient energy metabolism in streptomycin dependent E. coli, Biochim, Biophys. Acta 223:439.CrossRefGoogle Scholar
  38. Cowie, D. B., Spiegelman, S., Roberts, R. B., and Duerksen, J. D., 1961, Ribosome-bound β-galactosidase, Proc Natl. Acad. Sci. U.S. 47:114.CrossRefGoogle Scholar
  39. Cundliffe, E., 1970, Intracellular distribution of ribosomes and polyribosomes in Bacillus megaterium, J. Mol. Biol. 52:467.PubMedCrossRefGoogle Scholar
  40. Cunningham, D., and Pardee, A. B., 1969, Transport changes rapidly initiated by serum addition to “contact inhibited” 3T3 cells, Proc. Natl. Acad. Sci. U.S. 64:1049.CrossRefGoogle Scholar
  41. Delbecco, R., 1961, Viral carcinogenesis, Cancer Res. 21:975.Google Scholar
  42. Di Girolamo, M. D., Hinckley, E., and Busiello, E., 1968, Localization of ribosome precursors in Escherichia coli, Biochim, Biophys. Acta 169:387.CrossRefGoogle Scholar
  43. Dingman, W., and Sporn, M. B., 1964, Molecular theories of memory, Science 144:26.PubMedCrossRefGoogle Scholar
  44. Edström, A., 1967, Inhibition of protein synthesis in Mauthner nerve fibre components by actinomycin-D, J. Neurochem. 14:239.PubMedCrossRefGoogle Scholar
  45. Edström, J-E., Eichner, D., and Edström, A., 1962, The ribonucleic acid of axons and myelin sheaths from Mauthner neurons, Biochim. Biophys. Acta 61:178.PubMedGoogle Scholar
  46. Elson, D., 1959, Latent enzymatic activity of a ribonucleoprotein isolated from Echerichia coli, Biochim, Biophys. Acta. 36:372.CrossRefGoogle Scholar
  47. Emersonjun, C. P., 1971, Regulation of the synthesis and the stability of ribosomal RNA during contact inhibition of growth, Nature (New Biology) 232:101.Google Scholar
  48. Faiferman, I., Cornudella, L., and Pogo, A. O., 1971a, Messenger RNA nuclear particles and their attachment to cytoplasmic membranes in Krebs tumour cells, Nature (New Biology) 233:234.Google Scholar
  49. Faiferman, I., Hamilton, M. G., and Pogo, A. O., 1971b, Nucleoplasms ribonucleoprotein particles of rat liver. II. Physical properties and action of dissociating agents. Biochim. Biophys. Acta 232:685.PubMedCrossRefGoogle Scholar
  50. Fern, E. B., Hider, R. C., and London, D. R., 1971, Studies in vitro on free amino acid pools and protein synthesis in rat jujunum, Eur. J. Clin. Invest. 1:211.PubMedCrossRefGoogle Scholar
  51. Fields, K. L., and Luria, S. E., 1969a, Effects of colicins El and K on transport systems, J. Bacteriol. 97:57.PubMedGoogle Scholar
  52. Fields, K. L., and Buria, S. E., 1969b, Effects of colicins El and K on cellular metabolism, J. Bacteriol. 97:64.PubMedGoogle Scholar
  53. Flexner, L. B., and Flexner, J. B., 1966, Effects of acetoxycycloheximide and of an aceloxycycloheximide-puromycin mixture on cerebral protein synthesis and memory in mice, Proc. Natl. Acad. Sci. U.S. 55:369.CrossRefGoogle Scholar
  54. Flexner, L. B., and Flexner, J. B., 1967, Restoration of expression of memory lost after treatment with puromycin, Proc. Natl. Acad. Sci. U.S. 57:1651.CrossRefGoogle Scholar
  55. Flexner, L. B., and Flexner, J. B., 1968, Studies on memory: The long survival of peptidyl-puromycin in mouse brain, Proc. Natl. Acad. Sci. U.S. 60:923.CrossRefGoogle Scholar
  56. Flexner, L. B., Flexner, J. B., Roberts, R. B., and de la Haba, G., 1965, Loss of memory as related to inhibition of cerebral proten synthesis, J. Neu-rochem. 12:535.Google Scholar
  57. Flexner, L. B., Flexner, J. B., and Roberts, R. B., 1966, Stages of memory in mice treated with acetoxycycloheximide before or immediately after learning, Proc. Natl. Acad. Sci. U.S. 56:730.CrossRefGoogle Scholar
  58. Fredericq, P., 1958, Colicins and colicinogenic factors, Symp. Soc. Exp. Biol. 12:104.PubMedGoogle Scholar
  59. Freedman, M. L., Hori, M., and Rabinovitz, M., 1967, Membranes in polyribosome formation by rabbit reticulocytes, Science 157:323.PubMedCrossRefGoogle Scholar
  60. Ganoza, M. C., and Williams, C. A., 1969, In vitro synthesis of different catagories of specific proteins by membrane-bound and free ribosomes, Proc. Natl. Acad. Sci. U.S. 63:1370.CrossRefGoogle Scholar
  61. Giuditta, A., Dettbarn, W. D., and Brzin, M., 1968, Protein synthesis in the isolated giant axon of the squid, Proc. Natl. Acad. Sci. U.S. 59:1284.CrossRefGoogle Scholar
  62. Glazer, R. I., and Sartorelli, A. C., 1972, The differential sensitivity of free and membrane-bound polyribosomes to inhibitors of protein synthesis, Biochem. Biophys. Res. Comm. 46:1418.PubMedCrossRefGoogle Scholar
  63. Goldé, A., 1962, Chemical changes in chick embryo cells infected with Rous sarcoma virus in vitro, Virol. 16:282.CrossRefGoogle Scholar
  64. Haywood, A. M., 1971, Cellular site of Escherichia coli ribosomal RNA synthesis, Proc. Natl. Acad. Sci. U.S. 68:435.CrossRefGoogle Scholar
  65. Hendler, R. W., 1962, A model for protein biosynthesis, Nature 193:821.PubMedCrossRefGoogle Scholar
  66. Hendler, R. W., 1965, Importance of membranes in protein biosynthesis, Nature 207:1053.PubMedCrossRefGoogle Scholar
  67. Hendler, R. W., 1967, Protein synthesis as a membrane-oriented cellular activity, in: Protides of the Biological Fluids, Vol. 15 (H. Peeters, ed.), pp. 37–45, Elsevier Press, Amsterdam.Google Scholar
  68. Hendler, R. W., 1968, in: Protein Biosynthesis and Membrane Biochemistry, John Wiley and Sons, Inc., New York.Google Scholar
  69. Hendler, R. W., 1971, Respiration and protein synthesis in Escherichia coli membrane-envelope fragments. V. On the reduction of nonheme iron and the cytochromes by nicotinamide adenine dinucleotide and succinate, J. Cell Biol. 51:664.PubMedCrossRefGoogle Scholar
  70. Hendler, R. W., and Nanninga, N., 1970, Respiration and protein synthesis in Escherichia coli membrane-envelope fragments. III. Electron microscopy and analysis of the cytochromes, J. Cell Biol. 46:114.PubMedCrossRefGoogle Scholar
  71. Hendler, R. W., and Tani, J., 1964, On the cytological unit for protein synthesis in vivo in E. coli. II. Studies with intact cells of Type B, Biochim. Biophys. Acta 80:294.PubMedGoogle Scholar
  72. Hendler, R. W., Banfield, W. G., Tani, J., and Kuff, E. L., 1964, On the cytological unit for protein synthesis in vivo in E. coli. III. Electron microscopic and ultra-centrifugal examination of intact cells and fractions, Biochim. Biophys. Acta 80:307.PubMedGoogle Scholar
  73. Hendler, R. W., Burgess, A. H., and Scharff, R., 1969, Respiration and protein synthesis in Escherichia coli membrane-envelope fragments. I. Oxidative activities with soluble substrates, J. Cell Biol. 42:715.PubMedCrossRefGoogle Scholar
  74. Hendler, R. W., Burgess, A. H., and Scharff, R., 1970, Respiration and protein synthesis in Escherichia coli membrane-envelope fragments. II. Effects of fatty acids and albumin on respiration, J. Cell Biol. 44:376.PubMedCrossRefGoogle Scholar
  75. Heppel, L. A., 1971, The concept of periplasmic enzymes, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 223–247, Academic Press, New York.Google Scholar
  76. Hershko, A., Mamont, P., Shields, R., and Tomkins, G. M., 1971, Pleiotypic Response, Nature (New Biology) 232:206.Google Scholar
  77. Hicks, S. J., Drysdale, J. W., and Munro, H. N., 1969, Preferential synthesis of ferritin and albumin by different populations of liver polysomes, Science 164:584.PubMedCrossRefGoogle Scholar
  78. Hider, R. C., Fern, E. B., and London, D. R., 1969, Relationship between intracellular amino acids and protein synthesis in the extensor digitorum longus muscle of rats, Biochem. J. 114:171.PubMedGoogle Scholar
  79. Hochberg, A. A., Stratman, F. W., Zahlten, R. N., Morris, H. P., and Lardy, H. A., 1972, Binding of rat liver and hepatoma polyribosomes to stripped rough endoplasmic reticulum in vitro. Biological or an artifact? Biochem. J. 130:19.PubMedGoogle Scholar
  80. Hodgson, J. R., and Fisher, H. W., 1971, Formation of polyribosomes during recovery from contact inhibition of replication, J. Cell Biol. 49:945.PubMedCrossRefGoogle Scholar
  81. Hradec, J., and Dusek, Z., 1968, Effect of lipids, in particular cholesteryl 14-methylhexadecanoate, on the incorporation of labelled amino acids into transfer ribonucleic acid in vitro, Biochem. J. 110:1.PubMedGoogle Scholar
  82. Hradec, J., and Dusek, Z., 1970, Effect of lipids on aminoacyl-tRNA synthesis in Escherichia coli, FEBS Let. 6:86.CrossRefGoogle Scholar
  83. Hradec, J., Dusek, Z., Bermek, E., and Matthaei, H., 1971, The role of cholesteryl 14-methylhexadecanoate in peptide elongation reactions, Biochem. J. 123:959.PubMedGoogle Scholar
  84. Hsu, C. C., and Fox, C. F., 1970, Induction of the lactose transport system in a lipid-synthesis defective mutant of Escherichia coli, J. Bacteriol. 103:410.PubMedGoogle Scholar
  85. Hydén, H., and Lange, P. W., 1968, Protein synthesis in the hippocampal pyramidal cells of rats during a behavioral test, Science 159:1370.PubMedCrossRefGoogle Scholar
  86. Jacob, F., Siminovitch, L., Wollman, E., 1952, Sur la biosynthese d’une colcine et sur son mode d’action, Ann. Inst. Pasteur 83:295.Google Scholar
  87. James, D. W., Rabin, B. R., and Williams, D. J., 1969, Role of steroid hormones in the interaction of polysomes with endoplasmic reticulum, Nature 224:371.PubMedCrossRefGoogle Scholar
  88. Jarett, L., and Hendler, R. W., 1967, 2,4-Dinitrophenol and azide as inhibitors of protein and ribonucleic acid synthesis in anaerobic yeast, Biochem. 6:1693.CrossRefGoogle Scholar
  89. Johnson, G. S., Friedman, R. M., and Pastan, I., 1971, Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3’,5’ -cyclic monophosphate and its derivatives, Proc. Natl. Acad. Sci. U.S. 68:425.CrossRefGoogle Scholar
  90. Koenig, E., 1965a, Synthetic mechanisms in the axon. I. Local axonal synthesis of acetylcholinesterase, J. Neurochem. 12:343.PubMedCrossRefGoogle Scholar
  91. Koenig, E., 1965b, Synthetic mechanisms in the axon. II. RNA in myelin-free axons of the cat, J. Neurochem. 12:357.PubMedCrossRefGoogle Scholar
  92. Koenig, E., 1967, Synthetic mechanisms in the axon. IV. In vitro incorporation of [3H] precursors into axonal protein and RNA, J. Neurochem. 14:437.PubMedCrossRefGoogle Scholar
  93. Koenig, E., 1968, Intrinsic protein synthesizing mechanisms in the axon as bases for renewal and local functional differentiation of membrane, in: Macromolecules and the Function of the Neuron (Z. Lodin and S. P. R. Rose, eds.), pp. 121–127, Excerpta Medica, Amsterdam.Google Scholar
  94. Koenig, E., 1970, The axon as a heuristic model for studying membrane protein-synthesizing machinery, in: Protein Metabolism of the Nervous System (A. Lajtha, ed.), pp. 259–267, Plenum Press, New York.CrossRefGoogle Scholar
  95. Kosower, N. S., Vanderhoff, G. A., and Kosower, E. M., 1972, The effects of glutathione disulfide on initiation of protein synthesis, Biochim. Biophys. Acta 272:623.PubMedCrossRefGoogle Scholar
  96. Kraemer, P. M., 1971, Complex carbohydrates of animal cells: Biochemistry and physiology of the cell periphery, in: Biomembranes (L. A. Manson, ed.), pp. 67–190, Plenum Press, New York.CrossRefGoogle Scholar
  97. Kroon, A. M., 1965, Protein synthesis in mitochondria. III. On the effects of inhibitors on the incorporation of amino acids into protein by intact mitochondria and digitonin fractions, Biochim. Biophys. Acta 108:275.PubMedCrossRefGoogle Scholar
  98. Kruse, P. F., and Miedema, E., 1965, Production and characterization of multiple-layered populations of animal cells, J. Cell Biol. 27:273.PubMedCrossRefGoogle Scholar
  99. Kubota, K., Yamaki, H., and Nishimura, T., 1973, Functional interaction of free polyribosomes with the membrane of the endoplasmic reticulum in a cell-free protein-synthesizing system from plasmacytoma X5563, Biochem. Biophys. Res. Comm. 52:489.PubMedCrossRefGoogle Scholar
  100. Lelièvre, L., Prigent, B., and Paraf, A., 1971, Contact inhibition. Plasma membranes enzymatic activities in cultured cell lines, 1971, Biochem. Biophys. Res. Comm. 45:637.PubMedCrossRefGoogle Scholar
  101. Lester, G., 1965, Inhibition of growth, synthesis, and permeability in Neuro-spora crassa by phenethyl alcohol, J. Bacteriol. 90:29.PubMedGoogle Scholar
  102. Levine, E. M., Becker, Y., Boone, C. W., and Eagle, H., 1965, Contact in hibition, macromolecular synthesis and polyribosomes in cultured human diploid fibroblasts, Froc. Nail. Acad. Sci. U. S. 53:350.CrossRefGoogle Scholar
  103. Levitan, I. B., Muschynski, W. E., and Ramerez, G., 1972, Highly purified synaptosomal membranes from rat brain. Preparation and characterization, J. Biol. Chem. 247:5376.PubMedGoogle Scholar
  104. Lipmann, F., 1969, Polypeptide chain elongation in protein biosynthesis, Science 164:1024.PubMedCrossRefGoogle Scholar
  105. Luria, S. E., 1964, On the mechanisms of action of colicins, Ann. Inst. Pasteur 5:67, Suppl.Google Scholar
  106. Maeda, A., and Nomura, M., 1966, Interaction of colicins with bacterial cells. I. Studies with radioactive colicins, J. Bacteriol. 91:685.PubMedGoogle Scholar
  107. McMurray, W. C., and Dawson, R. M. C., 1969, Phospholipid exchange reactions within the liver cell, Biochem. J. 112:91.PubMedGoogle Scholar
  108. Meyhack, B., Meyhack, I., and Apirion, D., 1973, Colicin E3: a unique endoribonuclease, Proc. Nat. Acad. Sci., U.S.A. 70:156.CrossRefGoogle Scholar
  109. Monro, R. E., 1967, Catalysis of peptide bond formation by 50s ribosomal subunits from Escherichia coli, J. Mol. Biol. 26:147.PubMedCrossRefGoogle Scholar
  110. Monro, R. E., 1969, Protein synthesis: Uncoupling of polymerization from template control, Nature 223:903.PubMedCrossRefGoogle Scholar
  111. Monro, R. E., and Marcker, K. A., 1967, Ribosome-catalyzed reaction of puromycin with a formylmethonine-containing oligonucleotide, J. Mol. Biol. 25:347.PubMedCrossRefGoogle Scholar
  112. Monro, R. E., Cerna, J., and Marcker, K. A., 1968, Ribosome-catalyzed peptidyl transfer: Substrate specificity at the P-site, Proc. Natl. Acad. Sci. U.S. 61:1042.CrossRefGoogle Scholar
  113. Morgan, I. G., and Austin, L., 1968, Synaptosomal protein synthesis in a cell-free system, J. Neurochem. 15:41.PubMedCrossRefGoogle Scholar
  114. Murty, C. N., and Hallinan, T., 1969, Agranular membranes in free polysome preparations and their possible interference in studies of protein biosynthesis, Biochem. J. 112:269.PubMedGoogle Scholar
  115. Neu, H. C., and Heppel, L. A., 1964, The release of ribonuclease into the medium when Escherichia coli cells are converted to spheroplasts, J. Biol. Chem. 239:3893.PubMedGoogle Scholar
  116. Nihei, T., 1971, In vitro amino acid incorporation into myosin by free polysomes of rat skeletal muscle, Biochem. Biophys. Res. Comm. 43:1139.PubMedCrossRefGoogle Scholar
  117. Nolan, R. D., and Hoagland, M. B., 1971, Cytoplasmic control of protein synthesis in rat liver, Biochim, Biophys. Acta 247:609.CrossRefGoogle Scholar
  118. Nolan, R. D., and Hoagland, M. B., 1973, Increased protein synthetic capacity in vitro of rat liver rough endoplasmic reticulum following starvation, Biochem. Biophys. Res. Comm. 51:444.PubMedCrossRefGoogle Scholar
  119. Nolan, R. D., and Munro, H. N., 1972, Role of the endoplasmic reticulum membrane in the sulfhydryl requirement for protein synthesis, Biochim. Biophvs. Acta 272:473.CrossRefGoogle Scholar
  120. Nomura, M., 1963, Mode of action of colicines, Cold Spring Harbor Symp. Quant. Biol. 28:315.CrossRefGoogle Scholar
  121. Nomura, M., 1964, Mechanism of action of colicines, Proc. Natl. Acad. Sci. U.S. 52:1514.CrossRefGoogle Scholar
  122. Nomura, M., and Maeda, A., 1965, Mechanism of action of colicines, Zentr. Bakteriol. 196:216.Google Scholar
  123. Nomura, M., 1967, Colicins and related bacteriocins, in: Annual Review Microbiology Vol. 21 (C. E. Clifton, S. Raffel, and M. P. Starr, eds.), pp. 257–284, Annual Reviews, Inc., Palo Alto.Google Scholar
  124. Nomura, M., and Nakamura M., 1962, Reversibility of inhibition of nucleic acids and protein synthesis by colicin K, Biochem. Res. Comm. 7:306.CrossRefGoogle Scholar
  125. Nunn, W. D., and Trapp, B. E., 1972, Effects of phenethyl alcohol on phospholipid metabolism in Escherichia coli, J. Bacteriol. 109:162.Google Scholar
  126. Ochs, S., 1972, Fast transport of materials in mammalian nerve fibers, Science 176:252.PubMedCrossRefGoogle Scholar
  127. Osborn, M. J., 1971, The role of membranes in the synthesis of macromolecules, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 348–400, Academic Press, New York.Google Scholar
  128. Otten, J., Bader, J., Johnson, G. S., and Pastan, I., 1972, A mutation in a Rous Sarcoma virus gene that controls adenosine 3’,5’-monophosphate levels and transformation, J. Biol. Chem. 247:1632.PubMedGoogle Scholar
  129. Palay, S. L., and Palade, G., 1955, The fine structure of neurons, J. Biophys. Biochem. Cytol. 1:69.PubMedCrossRefGoogle Scholar
  130. Peery, C. V., Johnson, G. S., and Pastan, I., 1971, Adenyl cyclase in normal and transformed fibroblasts in tissue culture, J. Biol. Chem. 246:5785.PubMedGoogle Scholar
  131. Plagemann, P. G. W., 1968a, Phenethyl alcohol reversible inhibition of synthesis of macromolecules and disaggregation of polyribosomes in rat hepatoma cells, Biochim. Biophys. Acta 155:202.PubMedCrossRefGoogle Scholar
  132. Plagemann, P. G. W., 1968b, On the mechanism of phenethyl alcohol-induced loss of polyribosomes and their re-formation after reversal in rat hepatoma cells, J. Biol. Chem. 243:3029.PubMedGoogle Scholar
  133. Quartermain, D., McEwen, B. S., and Azmitia, E. C., Jr., 1970, Amnesia produced by electroconvulsive shock or cycloheximide: Conditions for recovery, Science 169:683.PubMedCrossRefGoogle Scholar
  134. Raetz, C. R. H., and Kennedy, E. P., 1972, The association of phosphatidyl-serine synthetase with ribosomes in extracts of Escherchia coli, J. Biol. Chem. 247:2008.Google Scholar
  135. Ragland, W. L., Shires, T. K., and Pitot, H. C., 1971, Polyribosomal attachment to rat liver and hepatoma endoplasmic reticulum in vitro, Biochem. J. 121:271.PubMedGoogle Scholar
  136. Ragnotti, G., Lawford, G. R., and Campbell, P. N., 1969, Biosynthesis of microsomal nicotinamide-adenine dinucleotide phosphate-cytochrome c reductase by membrane-bound and free polysomes of rat liver, Biochem. J. 112:139.PubMedGoogle Scholar
  137. Ramirez, G., 1973, Synaptic plasma membrane protein synthesis: selective inhibition by chloramphenicol in vivo, Biochem. Biophys. Res. Comm. 50:452.PubMedCrossRefGoogle Scholar
  138. Ramirez, G., Levitan, I. B., and Mushynski, W. E., 1972, Highly purified synaptosomal membranes from rat brain. Incorporation of amino acids into membrane proteins in vitro, J. Biol. Chem. 247:5382.PubMedGoogle Scholar
  139. Redman, C.M., 1968, The synthesis of serum proteins on attached rather than free ribosomes of rat liver, Biochem. Biophys. Res. Comm. 31:845.PubMedCrossRefGoogle Scholar
  140. Redman, C.M., 1969, Biosynthesis of serum proteins and ferritin by free and attached ribosomes of rat liver, J. Biol. Chem. 244:4308.PubMedGoogle Scholar
  141. Ringrose, P. S., 1972, Interaction between colicin E2 and DNA in vitro, FEBS Let. 23:241.CrossRefGoogle Scholar
  142. Roberts, R. B., Flexner, J. B., and Flexner, L. B., 1970, Some evidence for the involvement of adrenergic sites in the memory trace, Proc. Natl. Acad. Sci. U.S. 66:310.CrossRefGoogle Scholar
  143. Robinson, G. B., 1969, The contamination of rat-liver polyribosomal preparations by non-ribosomal proteins, FEBS Let. 4:190.CrossRefGoogle Scholar
  144. Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1968, Cyclic AMP, Ann. Rev. Biochem. 37:149.PubMedCrossRefGoogle Scholar
  145. Rolleston, F. S., and Mak, D., 1973, The binding of polyribosomes to smooth and rough endoplasmic reticulum membranes, Biochem. J. 131:851.PubMedGoogle Scholar
  146. Rosbash, M., and Penman, S., 1971a, Membrane-associated protein synthesis of mammalian cells. I. The two classes of membrane-associated ribosomes, J. Mol. Biol. 59:227.PubMedCrossRefGoogle Scholar
  147. Rosbash, M., and Penman, S., 1971b, Membrane-associated protein synthesis of mammalian cells. II. Isopycnic separation of membrane-bound polyribosomes, J. Mol. Biol. 59:243.PubMedCrossRefGoogle Scholar
  148. Sabatini, D. D., and Blobel, G., 1970, Controlled proteolysis of nascent polypeptides in rat liver cell fractions. II. Location of the polypeptides in rough microsomes, J. Cell Biol. 45:146.PubMedCrossRefGoogle Scholar
  149. Sabatini, D. D., Tashiro, Y., and Palade, G. E., 1966, On the attachment of ribosomes to microsomal membranes, J. Mol. Biol. 19:503.PubMedCrossRefGoogle Scholar
  150. Sachs, L., and Medina, D., 1961, In vitro transformation of normal cells by polysoma virus, Nature 189:457.PubMedCrossRefGoogle Scholar
  151. Scharff, R., Hendler, R. W., Nanninga, N., and Burgess, A. H., 1972, Respiration and protein synthesis in Escherichia coli membrane-envelope fragments. IV. Chemical and cytological characterization and biosynthetic capabilities of fragments obtained by mild procedures, J. Cell Biol. 53:1.PubMedCrossRefGoogle Scholar
  152. Schmitt, F. O., 1964, Molecules and Memory, New Scientists 23:643.Google Scholar
  153. Scott-Burden, T., and Hawtrey, A. D., 1969, Preparation of ribosome-free membranes from rat liver microsomes by means of lithium chloride, Biochem. J. 115:1063.PubMedGoogle Scholar
  154. Senior, B. W., and Holland, I. B., 1971, Effect of colicin E3 upon the 30s ribosomal subunit of Escherichia coli, Proc. Natl. Acad. Sci. U.S. 68:959.CrossRefGoogle Scholar
  155. Serota, R. G., 1971, Acetoxycycloheximide and transient amnesia in the rat, Proc. Natl. Acad. Sci. U.S. 68:1249.CrossRefGoogle Scholar
  156. Serota, R. G., Roberts, R. B., and Flexner, L. B., 1972, Acetoxycyclohexi-mide-induced transient amnesia: Protective effects of adrenergic stimulants, Proc. Natl. Acad. Sci. U.S. 69:340.CrossRefGoogle Scholar
  157. Sheppard, J. R., 1971, Restoration of contact-inhibited growth to transformed cells by dibutyryl adenosine 3’,5’-cyclic monophosphate, Proc. Natl. Acad. Sci. U.S. 68:1316.CrossRefGoogle Scholar
  158. Sherr, C., and Uhr, J., 1970, Immunoglobulin synthesis and secretion, V. Incorporation of leucine and glucosamine into immunoglobulin on free and bound polyribosomes, Proc. Natl. Acad. Sci. U. S. 66:1183.CrossRefGoogle Scholar
  159. Shires, T. K., Narurkar, L., and Pitot, H. C., 1971a, The association in vitro of polyribosomes with ribonuclease-treated derivatives of hepatic rough endoplasmic reticulum, Biochem. J. 125:67.PubMedGoogle Scholar
  160. Shires, T. K., Narurkar, L. M., and Pitot, H. C., 1971b, Polysome interaction in vitro with smooth microsomal membranes from rat liver, Biochem. Biophys. Res. Comm. 45:1212.PubMedCrossRefGoogle Scholar
  161. Shires, T. K., and Pitot, H. C., 1973, Correlation of rat liver membrane binding of polysomes in vitro with function of the complexes formed, Biochem. Biophys. Res. Comm. 50:344.PubMedCrossRefGoogle Scholar
  162. Silver, S., and Wendt, L., 1967, Mechanism of action of phenethyl alcohol: Breakdown of the cellular permeability barrier, J. Bacteriol. 93:560.PubMedGoogle Scholar
  163. Silverstein, E., 1969, Requirements for ribosomal peptide bond-forming activity in the fragment reaction, Biochim. Biophys. Acta 186:402.PubMedCrossRefGoogle Scholar
  164. Sjöstrand, F. S., and Elfvin, L. G., 1964, The granular structure of mitochondrial membranes and cytomembranes as demonstrated in frozen-dried tissue, J. Ultrastruct. Res. 10:263.CrossRefGoogle Scholar
  165. Spahr, P. F., and Hollingsworth, B. R., 1961, Purification and mechanism of action of ribonuclease from Escherichia coli ribosomes, J. Biol. Chem. 236:823.Google Scholar
  166. Squire, L. R., and Barondes, S. H., 1972, Variable decay of memory and its recovery in cycloheximide-treated mice, Proc. Natl. Acad. Sci. U. S. 69:1416.CrossRefGoogle Scholar
  167. Stoker, M. G. P., and Rubin, H., 1967, Density dependent inhibition of cell growth in culture, Nature 215:171.PubMedCrossRefGoogle Scholar
  168. Sunshine, G. H., Williams, D. J., and Rabin, B. R., 1971, Role for steroid hormones in the interaction of ribosomes with the endoplasmic reticulum of rat liver, Nature (New Biology) 230:133.Google Scholar
  169. Takagi, M., Tanaka, T., and Ogata, K., 1970, Functional differences in protein synthesis between free and bound polysomes of rat liver, Biochim. Biophys. Acta 217:148.PubMedCrossRefGoogle Scholar
  170. Tal, M., and Elson, D., 1963, The location of ribonuclease in Escherichia coli, Biochim. Biophys. Acta 76:40.PubMedCrossRefGoogle Scholar
  171. Tanaka, T., and Ogata, K., 1971, Preferential synthesis of arginase by free polysomes from rat liver, J. Biochem. (Japan) 70:693.Google Scholar
  172. Tani, J., and Hendler, R. W., 1964, On the cytological unit for protein synthesis in vivo in E. coli. I. Studies with spheroplasts of type K-12, Biochim. Biophys. Acta 80:279.PubMedGoogle Scholar
  173. Tata, J. R., 1970, Co-ordination between membrane phospholipid synthesis and accelerated biosynthesis of cytoplasmic ribonucleic acid and protein, Biochem. J. 116:617.PubMedGoogle Scholar
  174. Tata, J. R., and Williams-Ashman, H. G., 1967, Effects of growth hormone and tri-iodothyronine on amino acid incorporation by microsomal subfractions from rat liver, Eur. J. Biochem. 2:366.PubMedCrossRefGoogle Scholar
  175. Temin, H. M., and Rubin, H., 1958, Characteristics of an assay for Rous sarcoma virus and Rous cells in tissue culture, Virol. 6:669.CrossRefGoogle Scholar
  176. Todaro, G. J., Green, H., and Goldberg, B., 1964, Transformation of properties of an established cell line by SV-40 and polyoma virus, Proc. Natl. Acad. Sci. U.S. 51:66.CrossRefGoogle Scholar
  177. Todaro, G. J., Lazar, G. K., and Green, H., 1965, The initiation of cell division in a contact-inhibited mammalian cell line, J. Cell. Comp. Physiol. 66:325.CrossRefGoogle Scholar
  178. Todaro, G. J., Matsuya, Y., Bloom, S., Robbins, A., and Green, H., 1967, Stimulation of RNA synthesis and cell division in resting cells by a factor present in serum, in: Growth Regulating Substances for Animal Cells in Culture (V. Defendi and M. Stoker, eds.), p. 87, Wistar Institute Press, Philadelphia.Google Scholar
  179. Towers, N. R., Raison, J. K., Kellerman, G. M., and Linnane, A. W., 1972, Biochim. Biophys. Acta 287:301.PubMedCrossRefGoogle Scholar
  180. Treick, R. W., and Konetzka, W. A., 1964, Physiological state of Escherichia coli and the inhibition of deoxyribonucleic acid synthesis by phenethyl alcohol, J. Bacteriol. 88:1580.PubMedGoogle Scholar
  181. Tremblay, G. Y., Daniels, M. J., and Schaechter, M., 1969, Isolation of a cell membrane-DNA-nascent RNA complex from bacteria, J. Mol. Biol. 40:65.PubMedCrossRefGoogle Scholar
  182. van Venrooij, W. J., Poort, C., Kramer, M. F., and Jansen, M. T., 1972, Relationship between extracellular amino acids and protein synthesis in vitro in the rat pancreas, Eur. J. Biochem. 30:427.PubMedCrossRefGoogle Scholar
  183. Wehrli, W., and Staehelin, M., 1971, Fractionation of the nonpolar transfer ribonucleic acids from rat liver, yeast, and Escherichia coli by partition chromatography, Biochem. 10:1878.CrossRefGoogle Scholar
  184. Weissbach, H., Redfield, B., and Kaback, H. R., 1969, Nucleotide binding by Escherichia coli membranes and solubilized membrane proteins, Arch. Biochem. Biophys. 135:66.PubMedCrossRefGoogle Scholar
  185. Wengler, G., and Wengler, G., 1972, Medium hypertonicity and polyribosome structure in HeLa cells, Eur. J. Biochem. 21:162.CrossRefGoogle Scholar
  186. Williams, C. A., and Ganoza, M. C., 1970, Identification of proteins made on microsomes and free ribosomes of rat liver, in: Plasma Protein Metabolism (M. A. Rothschild, and T. Waldmann, eds.), pp. 169–184, Academic Press, New York.Google Scholar
  187. Williams, D. J., and Rabin, B. R., 1969, The effects of aflotoxin B, and steroid hormones on polysome binding to microsomal membranes as measured by the activity of an enzyme catalyzing disulphide interchange, FEBS Let. 4:103.CrossRefGoogle Scholar
  188. Wirtz, K. W., and Zilversmit, D. B., 1969, Participation of soluble liver proteins in the exchange of membrane phospholipids, Biochim. Biophys. Acta 193:105.PubMedCrossRefGoogle Scholar
  189. Yeh, J., and Fisher, H. W., 1969, A diffusible factor which sustains contact inhibition of replication, J. Cell Biol. 40:382.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Richard W. Hendler
    • 1
  1. 1.Laboratory of BiochemistryNational Heart and Lung InstituteBethesdaUSA

Personalised recommendations