Advertisement

Membrane Transport Proteins

  • Dale L. Oxender
Part of the Biomembranes book series (B, volume 5)

Abstract

The relative constancy of the internal environment of the cell is maintained by a variety of transport systems which are located within the membrane. These transport systems serve to regulate the entrance and exit of various solutes concerned with the metabolic activity of the cell.

Keywords

Transport System Osmotic Shock Phosphotransferase System Membrane Transport Protein Shocked Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, J., 1966, Chemotaxis in bacteria, Science 153:708–716.PubMedCrossRefGoogle Scholar
  2. Adler, J., 1969, Chemoreceptors in bacteria: Studies of Chemotaxis reveal systems that detect attractants independently of their metabolism, Science 166:1588–1597.PubMedCrossRefGoogle Scholar
  3. Ames, G. F., 1964, Uptake of amino acids by Salmonella typhimurium, Arch. Biochem. Biophys. 104:1–18.CrossRefGoogle Scholar
  4. Ames, G. F., and Lever, J., 1970, Components of histidine transport: Histidine-binding proteins and hisP protein, Proc. Natl. Acad. Sci. U.S. 66C:1096–1103.CrossRefGoogle Scholar
  5. Ames, G. F., and Lever, J. E., 1972, The histidine-binding protein J is a component of histidine transport. Identification of its structural gene, his J, J. Biol. Chem. 247:4309–4316.PubMedGoogle Scholar
  6. Ames, F. G., and Roth, J. R., 1968, Histidine and aromatic permeases of Salmonella typhimurium, J. Bacteriol. 96:1742–1749.PubMedGoogle Scholar
  7. Anderson, B. E., 1968, Studies on the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli, Ph. D. thesis, The University of Michigan, Ann Arbor.Google Scholar
  8. Anraku, Y., 1967, The reduction and restoration of galactose transport in osmotically shocked cells of Escherichia coli, J. Biol. Chem. 242:793–800Google Scholar
  9. Anraku, Y., 1968a, Transport of sugars and amino acids in bacteria. I. Purification and specificity of the galactose- and leucine-binding proteins, J. Biol. Chem. 243:3116–3122.PubMedGoogle Scholar
  10. Anraku, Y., 1968b, Transport of sugars and amino acids in bacteria. II. Properties of galactose- and leucine-binding proteins, J. Biol. Chem. 132:3123–3127.Google Scholar
  11. Anraku, Y., 1968c, Transport of sugars and amino acids in bacteria. III. Studies on the restoration of active transport, J. Biol. Chem. 243:3128–3135.PubMedGoogle Scholar
  12. Anraku, Y., and Heppel, L. A., 1967, On the nature of the changes induced in Escherichia coli by osmotic shock, J. Biol. Chem. 242:2561–2569.PubMedGoogle Scholar
  13. Armstrong, J. B., and Adler, J., 1969a, Complementation of nonchemotactic mutants of Escherichia coli, Genet. 61:61–66.Google Scholar
  14. Armstrong, J. B., and Adler, J., 1969b, Location of genes for motility and Chemotaxis on the Escherichia coli genetic map, J. Bacteriol. 97:156–161.PubMedGoogle Scholar
  15. Armstrong, J. B., Adler, J., and Dahl, M. M., 1967, Nonchemotactic mutants of Escherichia coli, J. Bacteriol. 93:390–398.Google Scholar
  16. Barnes, E. M. Jr., and Kaback, H. R., 1970, β-galactoside transport in bacterial membrane preparations: Energy coupling via membrane bound D-lactic dehydrogenase, Proc. Natl. Acad. Sci. U.S. 66:1190–1198.CrossRefGoogle Scholar
  17. Barnes, E. M. Jr., and Kaback, H. R., 1971, Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and β-galactoside transport, J. Biol. Chem. 246:5518–5522.PubMedGoogle Scholar
  18. Bennett, R. L., and Malamy, M. H., 1970, Arsenate-resistant mutants of Escherichia coli and phosphate transport, Basteriol Proc., p. 131, Abstract P50.Google Scholar
  19. Bennett, R. L., and Malamy, M. H., 1971, Multiple inducible transport systems for phosphate and aresenate in Escherichia coli, Bacteriol. Proc., p. 130, Abstract P37.Google Scholar
  20. Berger, E. A., Weiner, J. H., and Heppel, L. A., 1971, Amino acid transport and binding proteins in E. coli., Federation Proc. 30:1061, Abstract, 50.Google Scholar
  21. Boezi, J. A., and DeMoss, R. D., 1961, Properties of a tryptophan transport system in Escherichia coli, Biochem. Biophys. Acta 49:471–484.Google Scholar
  22. Boos, W., 1969, The galactose-binding protein and its relationship to the ß-methyl galactoside permease from Escherichia coli, Eur. J. Biochem. 10:66–73.PubMedCrossRefGoogle Scholar
  23. Boos, W., 1972, Structurally defective galactose-binding protein isolated from a mutant negative in the β-methylgalactoside transport system of Escherichia coli, J. Biol. Chem. 247:5414–5424.PubMedGoogle Scholar
  24. Boos, W., 1974a, Bacterial transport, Ann. Rev. Biochem. 43 (in press).Google Scholar
  25. Boos, W., 19746, Pro- and contra-carrier molecules in active transport. Role of periplasmic galactose-binding protein in β -methylgalactoside transport in E. coli, in Current Topics in Membranes and Transport (F. Bronner and A. Kleinzeller, eds.), Vol. 5, Academic Press, New York.Google Scholar
  26. Boos, W., and Gordon, A. S., 1971, Transport properties of the galactose-binding protein of Escherichia coli: Occurrence of two conformational states, J. Biol. Chem. 246:621–628.PubMedGoogle Scholar
  27. Boos, W., and Sarvas, M., 1970, Close linkage between a galactose-binding protein and the β-methylgalactoside permease in Escherichia coli, Eur. J. Biochem. 13:526–533.PubMedCrossRefGoogle Scholar
  28. Boos, W., Gordon, A. S., Hall, R. E., and Price, H. D., 1972, Transport properties of the galactose-binding protein of Escherichia coli, J. Biol. Chem. 247:917–924.PubMedGoogle Scholar
  29. Briggs, F. N., and Fleishman, M., 1965, Calcium binding by particle-free supernatants of homogenates of skeletal muscle, J. Gen. Physiol. 49:131–149.PubMedCrossRefGoogle Scholar
  30. Britten, R. J., and McClure, F. T., 1962, The amino acid pool in Escherichia coli, Bacteriol. Rev. 26:292–335.PubMedGoogle Scholar
  31. Brown, K. D., 1970, Formation of aromatic amino acid pools in Escherichia coli K-12,7. Bacteriol. 104:177–188.Google Scholar
  32. Burrous, S. E., and DeMoss, R. D., 1963, Studies on tryptophan permease in Escherichia coli, Biochim. Biophsy. Acta 73:623–637.CrossRefGoogle Scholar
  33. Bussey, H., and Umbarger, H. E., 1970a, Biosynthesis of the branched-chain amino acids in yeast: A leucine-binding component and regulation of leucine uptake, J. Bacteriol. 103:277–285.PubMedGoogle Scholar
  34. Bussey, H., and Umbarger, H. E., 1970b, Biosynthesis of the branched-chain amino acids in yeast: A trifluoroleucine-resistant mutant with altered regulation of leucine uptake, J. Bacteriol. 103:286–294.PubMedGoogle Scholar
  35. Buttin, G., 1963, Mécanismes régulateurs dans la biosynthèse des enzymes du métabolisme du galactose chez Escherichia coli K12. I. La biosynthèse induite de la galactokinase et l’induction simultanée de la sequence enzymatique, J. Mol. Biol. 7:164–182.PubMedCrossRefGoogle Scholar
  36. Carter, J. R. Jr., Fox, C. F., and Kennedy, E. P., 1968, Interaction of sugars with the membrane protein component of the lactose transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S. 61:725–732.CrossRefGoogle Scholar
  37. Christensen, H. N., 1969, Some special kinetic problems of transport, Advan. Engymol. 32:1–20.Google Scholar
  38. Christensen, H. N., Handlogten, M. E., Tager, H. S., and Zand, R., 1969, A bicyclic amino acid to improve discriminations among transport systems, J. Biol. Chem. 244:1510–1520.PubMedGoogle Scholar
  39. Cohen, G. N., and Rickenberg, H. V., 1956, Concentration spécifique réversible des amino acids chez Escherichia coli, Ann. Inst. Pasteur 91:693–720.Google Scholar
  40. Corradino, R. A., and Wasserman, R. H., 1971, Stimulation of calcium transport in embryonic chick intestine by incubation in medium containing vitamin D3-induced calcium-binding protein, Biophys. J. 11:276a.Google Scholar
  41. Cautrecasas, P., Wilchek, M., and Anfinsen, C. B., 1968, Selective enzyme purification by affinity chromatography, Proc. Natl. Acad. Sci. U.S. 61:636–643.CrossRefGoogle Scholar
  42. Doyle, M. E., Brown, C., Hogg, R. W., and Helling, R. B., 1972, Induction of the ara Operon of Escherichia coli, J. Bacteriol. 110:56–65.PubMedGoogle Scholar
  43. Dreyfuss, J., 1964, Characterization of a sulfate- and thiosulfate-transporting system in Salmonella typhimurium, J. Biol. Chem. 239:2292–2297.PubMedGoogle Scholar
  44. Dreyfuss, J., and Monty, K., 1963, The biochemical characterization of cysteine-requiring mutants of Salmonella typhimurium, J. Biol. Chem. 238:1019–1024.Google Scholar
  45. Dreyfuss, J., and Pardee, A. B., 1965, Evidence for a sulfate-binding site external to the cell membrane of Salmonella typhimurium, Biochim. Biophys. Acta 104:308–310.PubMedCrossRefGoogle Scholar
  46. Ebashi, S., 1961, Calcium binding activity of vesicular relaxing factor, J. Biochem. (Tokyo) 50:238–244.Google Scholar
  47. Ebashi, S., and Lipmann, F., 1962, Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle, J. Cell Biol. 14:389–400.PubMedCrossRefGoogle Scholar
  48. Egan, J. B., and Morse, M. L., 1965a, Carbohydrate transport in Staphylococcus aureus. I. Genetic and biochemical analysis of a pleiotrophic transport mutant, Biochim. Biophys. Acta 97:310–319.PubMedCrossRefGoogle Scholar
  49. Egan, J. B., and Morse, M. L., 1965b, Carbohydrate transport in Staphylococcus aureus. II. Characterization of the defect of a pleiotrophic transport mutant, Biochim. Biophys, Acta 109:172–183.CrossRefGoogle Scholar
  50. Egan, J. B., and Morse, M. L., 1966, Carbohydrate transport in Staphylococcus aureus. III. Studies of the transport process, Biochim. Biophys. Acta 112:63–73.PubMedCrossRefGoogle Scholar
  51. Fox, C. F., 1969, A lipid requirement for induction of lactose transport in Escherichia coli, Proc. Natl. Acad. Sci. U.S. 63:850–855.CrossRefGoogle Scholar
  52. Fox, C. F., and Kennedy, E. P., 1965, Specific labelling and partial purification of the M protein, a component of the beta galactoside transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S. 54:891–899.CrossRefGoogle Scholar
  53. Fox, C. F., and Wilson, G., 1968, The role of a phosphoenolpyruvate-dependent kinase system in β-glucoside catabolism in Escherichia coli, Proc. Natl. Acad. Sci. U.S. 59:988–995.CrossRefGoogle Scholar
  54. Furlong, C. E., and Weiner, J. H., 1970, Purification of a leucine-specific binding protein from Escherichia coli, Biochem. Biophys. Res. Comm. 38:1076–1083.PubMedCrossRefGoogle Scholar
  55. Ganesan, A. K., and Rotman, B., 1966, Transport systems for galactose and galactosides in Escherichia coli. I. Genetic determination and regulation of methyl galactoside permease, J. Mol. Biol. 16:42–50.PubMedCrossRefGoogle Scholar
  56. Guroff, G., and Bromwell, K. E., 1969, Phenylalanine transport and phenyl-alanine-binding protein in Pseudomonas sp., Federation Proc. 28:667, #2285.Google Scholar
  57. Guroff, G., and Bromwell, K. E., 1971, Phenylalanine uptake and phenylalanine binding material in Comamonas sp., Arch. Biochem. Biophys. 137:379–387.CrossRefGoogle Scholar
  58. Halpern, Y. S., 1974, Genetics of amino acid transport in bacteria, Ann. Rev. Genetics 8 (in press).Google Scholar
  59. Harold, F. M., 1972, Conservation and transformation of energy by bacterial membranes, Bacteriol. Revs. 36:172–230.Google Scholar
  60. Hasselback, W., and Makinose, M., 1961, Die Calciumpumpe der “erschlaf-fungsgrana” des Muskels und ihre Abhängigkeit von der ATP-Spaltung, Biochem. Z. 333:518–528.Google Scholar
  61. Hasselback, W., and Makinose, M., 1962, ATP and active transport, Biochem. Biophys, Res. Comm. 7:132–136.CrossRefGoogle Scholar
  62. Hays, J. B., Simoni, R. D., and Roseman, S., 1973, Sugar transport V. A trimeric lactose-specific phosphocarrier protein of the Staphylococcus aureus phosphotransferase system, J. Biol. Chem. 248:941–956.PubMedGoogle Scholar
  63. Hazelbauer, G. L., and Adler, J., 1971, Role of the galactose binding protein in Chemotaxis of Escherichia coli toward galactose, Nature (New Biology) 230:101–104.Google Scholar
  64. Hazelbauer, G. L., Mesibov, R. E., and Adler, J., 1969, Escherichia coli mutants defective in Chemotaxis toward specific chemicals, Proc. Natl. Acad. Sci. U.S. 64:1300–1307.CrossRefGoogle Scholar
  65. Heinz, E., 1967, Transport through biological membrances, Ann. Rev. Physiol. 29:21–58.CrossRefGoogle Scholar
  66. Hengstenberg, W., Egan, J. B., and Morse, M. L., 1968, Carbohydrate transport in Staphylococcus aureus. VI. The nature of the derivatives accumulated, J. Biol. Chem. 243:1881–1885.PubMedGoogle Scholar
  67. Hengstenberg, W., Penberthy, W. K., Hill, K. L., and Morse, M. L., 1969, Phosphotransferase system of Staphylococcus aureus: Its requirement for the accumulation and metabolism of galactosides, J. Bacteriol. 99:383–388.PubMedGoogle Scholar
  68. Heppel, L. A., 1969, The effect of osmotic shock on release of bacterial proteins and on active transport, J. Gen. Physiol. 54:95s-109s.CrossRefGoogle Scholar
  69. Heppel, L. A., 1971, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 224–245, Academic Press, New York.Google Scholar
  70. Hogg, R. W., 1971, “In vivo” detection of L-arabinose-binding protein, CRM-negative mutants, J. Bacteriol. 105:604–608.PubMedGoogle Scholar
  71. Hogg, R. W., and Englesberg, E., 1969, L-Arabinose-binding protein from Escherichia coli B/r, J. Bacteriol. 100:423–432.PubMedGoogle Scholar
  72. Hokin, L. E., 1969, On the molecular characterization of the sodium-potassium transport adenosine triphosphatase, J. Gen. Physiol. 54:327s-342s.CrossRefGoogle Scholar
  73. Hokin, L. E., and Dahl, J. L., 1972, Sodium-potassium transport adenosine triphosphatase, in: Metabolic Pathways, Vol. 6 pp. 269–315 (L. E. Hokin, ed.), Academic Press, New York.Google Scholar
  74. Horecker, B. L., Thomas, J., and Monod, J., 1960a, Galactose transport in Escherichia coli. I. General properties as studied in a galactokinaseless mutant, J. Biol. Chem. 235:1580–1585.PubMedGoogle Scholar
  75. Horecker, B. L., Thomas, J., and Monod, J., 1960b, Galactose transport in Escherichia coli. II. Characteristics of the exit process, J. Biol. Chem. 235:1586–1590.PubMedGoogle Scholar
  76. Hummel, J. P., and Dreyer, W. J., 1962, Measurement of protein-binding phenomena by gel filtration, Biochim. Biophys. Acta 63:530–532.PubMedCrossRefGoogle Scholar
  77. Inui, Y., and Akedo, H., 1965, Amino acid uptake by Escherichia coli grown in presence of amino acids. Evidence for repressibility of amino acid uptake, Biochim. Biophys. Acta 94:143–152.PubMedCrossRefGoogle Scholar
  78. Jones, T. H. D., and Kennedy, E. P., 1969, Characterization of the membrane protein component of the lactose transport system of Escherichia coli, J. Biol. Chem. 244:5981–5987.PubMedGoogle Scholar
  79. Kaback, H. R., 1968, The role of the phosphoenolpyruvate-phosphotransfer-ase system in the transport of sugars by isolated membrane preparations of Escherichia coli, J. Biol. Chem. 243:3711–3724.PubMedGoogle Scholar
  80. Kaback, H. R., 1970a, Transport, Ann. Rev. Biochem. 39:561–598.PubMedCrossRefGoogle Scholar
  81. Kaback, H. R., 1970b, The transport of sugars across isolated bacterial membranes, in: Current Topics in Membranes and Transport (A. Kleinzeller and F. Bronner, eds.), pp. 35–99, Academic Press, New York.Google Scholar
  82. Kaback, H. R., 1971, Bacterial membranes, in: Methods in Enzymology (W. B. Jakoby, ed.) Vol. 22, pp. 99–120, Academic Press, New York.Google Scholar
  83. Kaback, H. R., 1972, Transport across isolated bacterial cytoplasmic membranes, Biochim. Biophys. Acta 265:367–416.PubMedCrossRefGoogle Scholar
  84. Kaback, H. R., and Barnes, E. M. Jr., 1971, Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and β-galactoside transport in membrane preparations from Escherichia coli, J. Biol. Chem. 246:5523–5531.PubMedGoogle Scholar
  85. Kaback, H. R., and Kostellow, A. B., 1968, Glycine uptake in Escherichia coli. I. Glycine uptake by whole cells of Escherichia coli W+ and a D-serine resistant mutant, J. Biol. Chem. 243:1384–1389.PubMedGoogle Scholar
  86. Kaback, H. R., and Milner, L. S., 1970, Relationship of a membrane-bound D-(-)-lactic dehydrogenase to amino acid transport in isolated bacterial membrane preparations, Proc. Natl. Acad. Sci. U.S. 66:1008–1015.CrossRefGoogle Scholar
  87. Kaback, H. R., and Stadtman, E. R., 1966, Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli, Proc. Natl. Acad. Sci. U.S. 55:920–927.CrossRefGoogle Scholar
  88. Kaback, H. R., and Stadtman, E. R., 1968, Glycine uptake in Escherichia coli. II. Glycine uptake, exchange, and metabolism by an isolated membrane preparation, J. Biol. Chem. 243:1390–1400.PubMedGoogle Scholar
  89. Kallfelz, F. A., Taylor, A. N., and Wasserman, R. H., 1967, Vitamin D-induced calcium binding factor in rat intestinal mucosa, Proc. Soc. Exp. Biol. Med. 125:54–58.PubMedGoogle Scholar
  90. Kanazawa, T., Yamada, S., Yamamoto, T., and Tonomura, Y., 1971, Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle, J. Biochem. (Tokyo) 70:95–123.Google Scholar
  91. Kashket, E. R., and Wilson, T. H., 1969, Isolation and properties of mutants of Escherichia coli with increased phosphorylation of thiomethyl-β-galactoside, Biochim. Biophys. Acta 193:294–307.PubMedCrossRefGoogle Scholar
  92. Kennedy, E. P., 1970, Lac permease system, in: The Lac Operon (J. Beckwith and D. Zipser, eds.), pp. 49–92, Cold Spring Harbor, New York.Google Scholar
  93. Kepes, A., 1960, Etudes cinetiques sur la galactoside-permease d’Escherichia coli, Biochim. Biophys. Acta 40:70–84.PubMedCrossRefGoogle Scholar
  94. Kepes, A., 1970, Galactoside permease of Escherichia coli, in: Current Topics in Membranes and Transport (F. Bronner and A. Kleinzeller, eds.) Vol. 1, pp. 101–134, Academic Press, New York.Google Scholar
  95. Kepes, A., and Cohen, G. N., 1962, Permeation, in: The Bacteria, Vol. IV (I. C. Gunsalus and R. Y. Stanier, eds.), pp. 179–221, Academic Press, New York.Google Scholar
  96. Kewar, G. K., Gordon, A. S., and Kaback, H. R., 1972, Mechanisms of active transport in isolated membrane vesicles. IV. Galactose transport by isolated membrane vesicles from Escherchia coli, J. Biol. Chem. 247:291–297.Google Scholar
  97. Klein, W. L., and Boyer, P. D., 1972a, in: Membrane Molecular Biology (C. F. Fox and A. D. Keith, eds.), Sinaeur, New York.Google Scholar
  98. Klein, W. L. and Boyer, P. D., 1972, Energization of active transport by Escherichia coli, J. Biol. Chem. 247:7257–7265.Google Scholar
  99. Klein, W. L., Dahms, A. S., and Boyer, P. D., 1970, The nature of the coupling of oxidative energy to amino acid transport, Federation Proc. 28:341, #540.Google Scholar
  100. Koch, A. L., 1964, The role of permease in transport, Biochim. Biophys. Acta 79:177–200.PubMedGoogle Scholar
  101. Kolber, A. R., and Stein, W. D., 1966, Identification of a component of a transport carrier system: Isolation of the permease expression of the Lac Operon of Escherichia coli, Nature 209:691–694.PubMedCrossRefGoogle Scholar
  102. Konings, W. N., Barnes, E. M., Jr., and Kaback, H. R., 1971, Mechanisms of active transport in isolated membrane vesicles. III. The coupling of reduced phenazine methosulfate to the concentrative uptake of β-galacto-sides and amino acids, J. Biol Chem. 246:5857–5861.PubMedGoogle Scholar
  103. Krajewska-Grynkiewicz, K., Walczak, W., and Klopotowski, T., 1971, Mutants of Salmonella typhimurium able to utilize D-histidine as a source of L-histidine, J. Bacteriol. 105:28–37.PubMedGoogle Scholar
  104. Kundig, W., and Roseman, S., 1966, A phosphoenol pyruvate hexose phosphotransferase system from Escherichia coli, in: Methods in Enzymology IX (W. Wood, ed.), p.396, Academic Press, New York.Google Scholar
  105. Kundig, W., and Roseman, S., 1969, Further studies on bacterial permeases, Federation Proc. 28:463, #1144.Google Scholar
  106. Kundig, W., and Roseman, S., 1971a, Sugar transport. I. Isolation of a phosphotransferase system from Escherichia coli, J. Biol. Chem. 246:1393–1406.PubMedGoogle Scholar
  107. Kundig, W, and Roseman, S., 1971b, Sugar transport. II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system, J. Biol. Chem. 246:1407–1418.PubMedGoogle Scholar
  108. Kundig, W., Ghosh, S., and Roseman, S., 1964, Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system, Proc. Natl. Acad. Sci. U.S. 52:1067–1074CrossRefGoogle Scholar
  109. Kundig, W., Kundig, F. D., Anderson, B. E., and Roseman, S., 1966, Restoration of active transport of glycosides in Escherichia coli by a component of a phosphotransferase system, J. Biol. Chem. 241:3243–3246.PubMedGoogle Scholar
  110. Kustu, S. G., and Ames, G. F., 1973, The his P protein, a known histidine transport component in Salmonella typhimurium, is also an arginine transport component, J. Bacteriol. 116:107–113.PubMedGoogle Scholar
  111. Kuzuya, H., Bromwell, K. E., and Guroff, G., 1971, The phenylalanine-binding protein of Comamonas sp. ATCC 11299A, J. Biol. Chem. 246:6371–6380.PubMedGoogle Scholar
  112. Kyte, J., 1971, Purification of the sodium- and potassium-dependent adenosine triphosphatase from canine renal medulla, J. Biol. Chem. 246:4157–4165.PubMedGoogle Scholar
  113. Landridge, R., Shinagawa, H., and Pardee, A. B., 1970, Sulfate-binding protein from Salmonella typhimurium: Physical properties, Science 169:59–61.CrossRefGoogle Scholar
  114. Lee, M. K., and Oxender, D. L., 1972, unpublished results.Google Scholar
  115. Lehninger, A. L., 1971, A soluble, heat-labile, high-affinity Ca2+-binding factor extracted from rat liver mitochondria, Biochem. Biophys. Res. Comm 42:312–317.PubMedCrossRefGoogle Scholar
  116. Leive, L., and Davis, B. D., 1965, The transport of diaminopimelate and cystine in Escherichia coli, J. Biol. Chem. 240:4362–4269.PubMedGoogle Scholar
  117. Lever, J. E., 1972, Purification and properties of a component of histidine transport in Salmonella typhimurium. The histidine-binding protein J.J. Biol. Chem. 247:4317–4326.Google Scholar
  118. Levinthal, M., and Simoni, R. D., 1969, Genetic analysis of carbohydrate transport-deficient mutant of Salmonella typhimurium, J. Bacteriol. 97:250–255.PubMedGoogle Scholar
  119. Lin, E. C. C., 1970, The genetics of bacterial transport systems, Ann, Rev. Genet. 4:225–261.CrossRefGoogle Scholar
  120. Lin, E. C. C., 1971, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp.286–333, Academic Press, New York.Google Scholar
  121. Lombardi, F. J., and Kaback, H. R., 1972. Mechanisms of active transport in isolated bacterial membrane vesicles VIII. The transport of amino acids by membranes prepared from Escherichia coli, J. Biol. Chem. 247:7844–7857.Google Scholar
  122. Maas, W. K., 1965, Genetic defects affecting an arginine permease and repression of arginine synthesis in Escherichia coli, Federation Proc. 24:1239–1242.Google Scholar
  123. Makinose, M., and Hasselback, W., 1971, ATP synthesis by the reverse of the sarcoplasmic calcium pump, FEBS. Let. 12:271.CrossRefGoogle Scholar
  124. Malamy, M. H., and Horecker, B. L., 1964a, Release of alkaline phosphatase from cells of Escherichia coli upon lysozyme spheroplast formation, Biochem. 3:1891–1893.Google Scholar
  125. Malamy, M. H., and Horecker, B. L., 1964ft, Purification and crystallization of the alkaline phosphatase of Escherichia coli, Biochem. 3:1893–1897.CrossRefGoogle Scholar
  126. Marquis, R. E., and Gerhardt, P., 1964, Respiration-coupled and passive uptake of α-aminoisobutyric acid, a metabolically inert transport analogue by Bacillus megaterium, J. Biol. Chem. 239:3361–3371.PubMedGoogle Scholar
  127. Martin, H. H., 1963, Bacterial protoplasts—A review, J. Theoret. Biol. 5: 1–34.CrossRefGoogle Scholar
  128. Martonosi, A., 1968, Sarcoplasmic reticulum. IV. Solubilization of microsomal adenosine triphosphatase, J. Biol. Chem. 243:71–81.PubMedGoogle Scholar
  129. Martonosi, A., 1969, Sarcoplasmic reticulum. VII. Properties of a phospho-protein intermediate implicated in calcium transport, J. Biol. Chem. 244:613–620.PubMedGoogle Scholar
  130. Martonosi, A., and Feretos, R., 1964a, Sarcoplasmic reticulum. I. The uptake of Ca++ by sarcoplasmic reticulum fragments, J. Biol. Chem. 239:648–658.PubMedGoogle Scholar
  131. Martonosi, A., and Feretos, R., 1964b, Sarcoplasmic reticulum. II. Correlation between adenosine triphosphate activity and Ca++ uptake, J. Biol. Chem. 239:659–668.PubMedGoogle Scholar
  132. Martonosi, A., Donley, J., and Halpin, R. A., 1968, Sarcoplasmic reticulum. III. The role of phospholipids in the adenosine triphosphatase activity and Ca++ transport, J. Biol. Chem. 243:61–70.PubMedGoogle Scholar
  133. Matchett, W. H., Turner, J. R., and Wiley, W. R., 1968, The role of tryptophan in the physiology of Neurospora, Yale J. Biol. Med. 40:257–283.PubMedGoogle Scholar
  134. Medveczky, N., and Rosenberg, H., 1969, The binding and release of phosphate by a protein isolated from Escherichia coli, Biochim. Biophys. Acta 192:369–371.PubMedCrossRefGoogle Scholar
  135. Medveczky, N., and Rosenberg, H., 1970, The phosphate-binding protein of Escherichia coli, Biochim. Biophys. Acta 211:158–168.CrossRefGoogle Scholar
  136. Milner, L. S., and Kaback, H. R., 1970, The relationship of a membrane-bound lactic dehydrogenase to proline transport in isolated bacterial membrane preparations, Federation Proc. 29:341, #541.Google Scholar
  137. Mitchell, P., 1973, Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge, J. Bioenergetics 4:63.CrossRefGoogle Scholar
  138. Mora, J., and Snell, E. E., 1963, The uptake of amino acids by cells and protoplasts of S. jaecalis, Biochemistry 2:136–141.CrossRefGoogle Scholar
  139. Nakane, P. K., Nichoalds, G. E., and Oxender, D. L., 1968, Cellular localization of leucine-binding protein from Escherichia coli, Science 161:182–183.PubMedCrossRefGoogle Scholar
  140. Naono, S., Rouvière, J., and Gros, F., 1965, Preferential transcription of the lactose Operon during the diauxic growth of Escherichia coli, Biochem. Biophys. Res. Comm. 18:664–674.CrossRefGoogle Scholar
  141. Neu, H. C., and Heppel, L. A., 1966, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240:3685–3692.Google Scholar
  142. Nichoalds, G. E., and Oxender, D. L., 1970, Comparison of leucine-binding proteins from different bacterial strains, Federation Proc, 29:341 # 543.Google Scholar
  143. Nossal, N. G., and Heppel, L. A., 1966, The release of enzymes by osmotic shock from Escherichia coli in exponential phase, J. Biol. Chem. 241:3055–3062.PubMedGoogle Scholar
  144. Novotny, C., and Englesberg, E., 1966, The L-arabinose permease system in Escherichia coli B/r, Biochim. Biophys. Acta 117:217–230.PubMedCrossRefGoogle Scholar
  145. Ohta, N., Galsworthy, P. R., and Pardee, A. B., 1971, Genetics of sulfate transport by Salmonella typhimurium, J. Bacteriol. 105:1053–1062.Google Scholar
  146. Ouchterlony, O., 1949, Antigen-antibody reactions in gels, Arkiv. Kemi 26: 1–9.Google Scholar
  147. Oxender, D. L., 1972a, Membrane transport, Ann. Rev. Biochem., 41:777–814.PubMedCrossRefGoogle Scholar
  148. Oxender, D. L., 1972b, Amino acid transport in microorganisms, in: Metabolic Pathways, Vol. 6 pp. 133–185 (L. E. Hokin, ed.), Academic Press, New York.Google Scholar
  149. Oxender, D. L., 1974, Genetic approaches to the study of transport, Chapter VI in: Biological Transport (H. N. Christensen, author), Benjamin Press, New York.Google Scholar
  150. Oxender, D. L., and Rahmanian, M., 1972, Leucine transport in Escherichia coli, in: The Molecular Basis of Biological Transport, (J. F. Woessner, Jr., and F. Huijing, eds.), Vol. 3, pp. 271–289, Academic Press, New York.Google Scholar
  151. Paigen, K., and Williams, B., 1970, Advan. Microbiol. Physiol. 4:251.CrossRefGoogle Scholar
  152. Pall, M. L., 1968, Kinetic and genetic studies of amino acid transport in Neurospora, Genet. 60:209, (Abstract).Google Scholar
  153. Pall, M. L., 1969, Amino acid transport in Neurospora crassa. I. Properties of two amino acid transport systems, Biochim. Biophys. Acta 173:113–127.PubMedCrossRefGoogle Scholar
  154. Pardee, A. B., 1957, An inducible mechanism for accumulation of melibiose in Escherichia coli, J. Bacteriol. 73:376–385.PubMedGoogle Scholar
  155. Pardee, A. B., 1966, Purification and properties of a sulfate-binding protein from Salmonella typhimurium, J. Biol. Chem. 241:5886–5892.PubMedGoogle Scholar
  156. Pardee, A. B., 1967, Crystallization of a sulfate-binding protein (permease) from Salmonella typhimurium, Science 156:1627–1628.PubMedCrossRefGoogle Scholar
  157. Pardee, A. B., 1968, Membrane transport proteins, Science 162:632–637.PubMedCrossRefGoogle Scholar
  158. Pardee, A. B., and Prestidge, L. S., 1966, Cell-free activity of a sulfate binding site involved in active transport, Proc. Natl. Acad. Sci. U.S. 55:189–191.CrossRefGoogle Scholar
  159. Pardee, A. B., and Watanabe, K., 1968, Location of sulfate-binding protein in Salmonella typhimurium, J. Bacteriol. 96:1049–1054.PubMedGoogle Scholar
  160. Pardee, A. B., Prestidge, L. S., Whipple, M. B., and Dreyfuss, J., 1966, A binding site for sulfate and its relation to sulfate transport into Salmonella typhimurium, J. Biol. Chem. 241:3962–3969.PubMedGoogle Scholar
  161. Pastan, I., and Perlman, R., 1970, Cyclic adenosine monophosphate in bacteria, Science 169:339–344.PubMedCrossRefGoogle Scholar
  162. Pavlasva, E., and Harold, F. M., 1969, Energy coupling in the transport of β-galactosides by Escherichia coli: Effect of proton conductors, J. Bacteriol. 98:198–204.Google Scholar
  163. Pearlman, W. H., and Crépy, O., 1967, Steroid-protein interaction with particular reference to testosterone binding by human serum, J. Biol. Chem. 242 :182–189.PubMedGoogle Scholar
  164. Penrose, W. R., Nichoalds, G. E., Piperno, J. R., and Oxender, D. L., 1968, Purification and properties of a leucine-binding protein from Escherichia coli, J. Biol. Chem. 243:5921–5928.PubMedGoogle Scholar
  165. Penrose, W. R., Zand, R., and Oxender, D. L., 1970, Reversible conformational changes in a leucine-binding protein from Escherichia coli, J. Biol. Chem. 245:1432–1437.PubMedGoogle Scholar
  166. Piperno, J. R., and Oxender, D. L., 1966, Amino acid-binding protein released from Escherichia coli by osmotic shock, J. Biol. Chem. 241:5732–5734.PubMedGoogle Scholar
  167. Piperno, J. R., and Oxender, D. L., 1968, Amino acid transport systems in Escherichia coli K12, J. Biol. Chem. 243:5914–5920.PubMedGoogle Scholar
  168. Prestidge, L. S., and Pardee, A. B., 1965, A second permease for methyl-thio-β-D-galactoside in Escherichia coli, Biochim. Biophys. Acta 100:591–593.PubMedCrossRefGoogle Scholar
  169. Rahmanian, M., Claus, D. R., and Oxender, D. L., 1973, Multiplicity of leucine transport systems in Escherichia coli K12, J. Bacteriol. 116:1258–1266.PubMedGoogle Scholar
  170. Rahmanian, M., and Oxender, D. L., 1971, Leucine-binding protein and transport in a d-leucine utilizing mutant of E. coli, Federation Proc. 30: 1061.Google Scholar
  171. Rahmanian, M., and Oxender, D. L., 1972b, Derepressed leucine transport activity in Escherichia coli, J. Supramol. Struct. 1:55–59.PubMedCrossRefGoogle Scholar
  172. Reynafarje, B., and Lehninger, A. L., 1969, High affinity and low affinity binding of Ca+2 by rat liver mitochondria, J. Biol. Chem. 244:584–593.PubMedGoogle Scholar
  173. Rickenberg, H. W., Cohen, C. N., Buttin, G., and Monod, J., 1956, La galactoside-perméase d’Escherichia coli, Ann. Inst. Pasteur 91:829–857.Google Scholar
  174. Roseman, S., 1969, The transport of carbohydrates by a bacterial phosphotransferase system, J. Gen. Physiol. 54:138s–184s.CrossRefGoogle Scholar
  175. Roseman, S., 1972a, Transport of carbohydrates by bacteria in: Metabolic Pathways, Vol. 6 pp. 41–89 (L. E. Hokin, ed.), Academic Press, New York.Google Scholar
  176. Roseman, S., 1972b, A bacterial phosphotransferase system and its role in sugar transport, in: The Molecular Basis of Biological Transport (J. F. Woessner Jr., and F. Huijing, eds.), Vol. 3, 181–218, Academic Press, New York.Google Scholar
  177. Rosen, B., 1971, Basic amino acid transport in Escherichia coli, J. Biol. Chem. 246:3653–3662.PubMedGoogle Scholar
  178. Rosen, B. P., and Vasington, F. D., 1971, Purification and characterization of a histidine binding protein from Salmonella typhimurium LT-2 and its relationship to the histidine permease system, J. Biol. Chem. 246:5351–5360.PubMedGoogle Scholar
  179. Rotman, B., 1959, Separate permeases for the accumulation of methyl-β-D-galactoside and methyl- β -D-thiogalactoside in Escherichia coli, Biochim. Biophys. Acta 32:499–601.CrossRefGoogle Scholar
  180. Rotman, B., 1971, personal communication.Google Scholar
  181. Rotman, B., Ganesan, A. K., and Guzman, R., 1968, Transport systems for galactose and galactosides in Escherichia coli. II. Substrate and inducer specificities, J. Mol. Biol. 36:247–260.PubMedCrossRefGoogle Scholar
  182. Saier, M. H. Jr., and Roseman, S., 1972, Inducer exclusion and repression of enzyme synthesis in mutants of Salmonella typhimurium defective in enzyme I of the phosphoenolpyruvate: Sugar phosphotransferase system, J. Biol. Chem. 247:972–975.PubMedGoogle Scholar
  183. Saier, N. H. Jr., Simoni, R. D., and Roseman, S., 1970, The physiological behavior of enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system, J. Biol. Chem. 245:5870–5873.PubMedGoogle Scholar
  184. Saier, M. H. Jr., Young, W. S., III, and Roseman, S., 1971, Utilization and transport of hexoses by mutant strains of Salmonella typhimurium lacking enzyme I of the phosphoenolpyruvate-dependent phosphotransferase system, J. Biol. Chem. 246:5838–5840.PubMedGoogle Scholar
  185. Schleif, R., 1969, An L-arabinose-binding protein and arabinose permeation in Escherichia coli, J. Mol. Biol. 46:185–196.PubMedCrossRefGoogle Scholar
  186. Schrecker, O., and Hengstenberg, W., 1971, Purification of lactose factor III of staphylococcal PEP dependent-phosphotransferase system, FEBS Let. 13:209.CrossRefGoogle Scholar
  187. Schwartz, J. H., Maas, W. K., and Simon, E. J., 1959, An impaired concentrating mechanism for amino acids in mutants of Escherichia coli resistant to L-canavanine and D-serine, Biochim. Biophys. Acta 32:582–583.PubMedCrossRefGoogle Scholar
  188. Sheppard, D. E., and Englesberg, E., 1967, Further evidence for positive control of the L-arabinose system by gene araC, J. Mol. Biol. 25:443–454.PubMedCrossRefGoogle Scholar
  189. Shifrin S., Ames, B. N., and Ames, G. F., 1966, Effect of the α-hydrazino analogue of histidine on histidine transport and arginine biosynthesis, J. Biol. Chem. 241:3424–3429.PubMedGoogle Scholar
  190. Short, S. A., White, D. D., and Kaback, H. R., 1972a, Active transport in isolated bacterial membrane vesicles. V. The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus, J. Biol. Chem. 247:298–304.PubMedGoogle Scholar
  191. Short, S. A., White, D. C., and Kaback, H. R., 1972b, Mechanisms of active transport in isolated bacterial membrane vesicles IX. The kinetics and specificity of amino acid transport in Staphylococcus aureus membrane vesicles, J. Biol. Chem. 247:7452–7458.PubMedGoogle Scholar
  192. Simoni, R. D., 1972, in: Membrane Molecular Biology (C. F. Fox and A. D. Keith, eds.), Sinaeur, New York.Google Scholar
  193. Simoni, R. D., and Roseman, S., 1973, Sugar transport. VII. Lactose transport in Staphylococcus aureus, J. Biol. Chem. 248:966–976.PubMedGoogle Scholar
  194. Simoni, R. D., Hays, J. B., Nakazawa, T., and Roseman, S., 1973a, Sugar transport VI. Phosphoryl transfer in the lactose phosphotransferase system of Staphylococcus aureus, J. Biol. Chem. 248:957–965.PubMedGoogle Scholar
  195. Simoni, R. D., Levinthal, M., Kundig, F. D., Kundig, W., Anderson, B. E., Hartman, P. E., and Roseman, S., 1967, Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport, Proc. Natl. Acad. Sci. U.S. 58:1963–1970.CrossRefGoogle Scholar
  196. Simoni, R. D., Nakazawa, T., Hays, J. B., and Roseman, S., 1973b, Sugar transport IV. Isolation and characterization of the lactose phosphotransferase system in Staphylococcus aureus, J. Biol. Chem. 248:932–940.PubMedGoogle Scholar
  197. Simoni, R. D., Smith, M. F., and Roseman, S., 1968, Resolution of a Staphylococcal phosphotransferase system into four protein components and its relation to sugar transport Biochem. Biophys. Res. Comm. 31:804–811.CrossRefGoogle Scholar
  198. Sistrom, W. R., 1958, On the physical state of the intra-cellularly accumulated substrates of β-galactoside-permease in Escherichia coli, Biochim. Biophys. Acta 29:579–587.PubMedCrossRefGoogle Scholar
  199. Slayman, C. W., 1973, Genetic control of transport, in: Current Topics in Membranes and Transport (F. Bronner and A. Kleinzeller, eds.), Vol. 4, Academic Press, New York.Google Scholar
  200. Stein, W. D., 1964, A procedure which labels the active centre of the glucose transport system of the human erythrocyte, in: The Structure and Activity of Enzymes (T. W. Goodwin, B. S. Hartley, and J. I. Harris, eds.), pp. 133–137, Academic Press, New York.Google Scholar
  201. Stein, W. D., 1967, Movement of Molecules Across Cell Membranes, Academic Press, New York.Google Scholar
  202. Tanaka, S., and Lin, E. C. C., 1967, Two classes of pleiotrophic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phosphotransferase system, Proc. Natl. Acad. Sci. U.S. 57:913–919.CrossRefGoogle Scholar
  203. Tanaka, S., Fraenkel, D. G., and Lin, E. C. C., 1967, The enzymatic lesion of strain MM-6. A pleiotropic carbohydrate-negative mutant of Escherichia coli, Biochem. Biophys. Res. Comm. 27:63–67.PubMedCrossRefGoogle Scholar
  204. Taylor, A. N., and Wasserman, R. H., 1967, Vitamin D3-induced calcium-binding protein: Partial purification, electrophoretic visualization, and tissue distribution, Arch. Biochem. Biophys. 119:536–540.PubMedCrossRefGoogle Scholar
  205. Taylor, A. N., and Wasserman, R. H., 1970, Immunofluorescent localization of vitamin D-dependent calcium-binding protein, J. Histochem. Cytochem. 18:107–115.PubMedCrossRefGoogle Scholar
  206. Taylor, A. N., Wasserman, R. H., and Jowsey, J., 1968, A vitamin D-dependent calcium-binding protein in canine intestinal mucosa, Federation Proc. 27:675.Google Scholar
  207. Vennes, J. W., and Gerhardt, P., 1959, Antigenic analysis of cell structures isolated from Bacillus megaterium,J. Bacteriol. 77:581–592.PubMedGoogle Scholar
  208. Vesugi, S., Dulak, N. C., Dixon, J. F., Hexum, T. D., Dahl, J. L., Perdue, J. F., and Hokin, L. E., 1971, Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. VI. Large scale partial purification and properties of a lubrolsolubilized bovine brain enzyme, J. Biol. Chem. 246:531–543.Google Scholar
  209. Wasserman, R. H., 1970, Interaction of vitamin D-dependent calcium-binding protein with lysolecithin: Possible relevance to calcium transport, Biochim. Biophys. Acta 203:176–179.PubMedCrossRefGoogle Scholar
  210. Wasserman, R. H., 1972, Transport of calcium by animal cells, in: Metabolic Pathways, Vol. 6 (L. E. Hokin, ed.), Academic Press, New York.Google Scholar
  211. Wasserman, R. H., and Taylor, A. N., 1963, Vitamin D3 inhibition of radiocalcium binding by chick intestinal homogenates, Nature 198:30–33PubMedCrossRefGoogle Scholar
  212. Wasserman, R. H., and Taylor, A. N., 1966, Vitamin D3-induced calcium-binding protein in chick intestinal mucosa, Science 152:791–793.PubMedCrossRefGoogle Scholar
  213. Wasserman, R. H., and Taylor, A. N., 1968, Vitamin D-dependent calcium-binding protein: Response to some physiological and nutritional variables, J. Biol. Chem. 243:3987–3993.PubMedGoogle Scholar
  214. Wasserman, R. H., Corradino, R. A., and Taylor, A. N., 1968, Vitamin D-dependent calcium-binding protein: Purification and some properties, J. Biol. Chem. 243:3978–3986.PubMedGoogle Scholar
  215. Wasserman, R. H. Corradino, R. A., and Taylor, A. N., 1969, Binding proteins from animals with possible transport function, J. Gen. Physiol. 54:114s–137s.CrossRefGoogle Scholar
  216. Weiner, J. H., Berger, E. A., Hamilton, M. N., and Heppel, L. A., 1970, Amino acid binding proteins released by osmotic shock, Federation Proc. 29:341 #542.Google Scholar
  217. Weiner, J. H., and Heppel, H. A., 1972, A binding protein for glutamine and its relation to active transport in Escherichia coli, J. Biol. Chem. Google Scholar
  218. West, I. C., 1970, Lactose transport coupled to proton movements in Escherichia coli, Biochem. Biophys. Res. Comm. 41:655–661.CrossRefGoogle Scholar
  219. Whittam, R., and Wheeler, K. P., 1970, Transport across cell membranes, Ann. Rev. Physiol. 32:21–60.CrossRefGoogle Scholar
  220. Wiley, W. R., 1970, Tryptophan transport in Neurospora crassa: A trypto-phan-binding protein released by osmotic shock, J. Bacteriol. 103:656–662.PubMedGoogle Scholar
  221. Wiley, W. R., and Matchett, W. H., 1966, Tryptophan transport in Neurospora crassa. I. Specificity and kinetics, J. Bacteriol. 92:1698–1705.PubMedGoogle Scholar
  222. Wiley, W. R., and Matchett, W. H., 1968, Tryptophan transport in Neurospora crassa. II. Metabolic control, J. Bacteriol. 95:959–966.PubMedGoogle Scholar
  223. Willis, R. C., Morris, R. G., Cirakoglu, C., Shellenberg, G. D., Gerber, N. H., and Furlong, C. E., 1974, Preparation of the periplasmic binding proteins from Salmonella typhimurium and Escherichia coli, J. Bacteriol. (in press).Google Scholar
  224. Wilson, G., Rose, S. P., and Fox, C. F., 1970, The effect of membrane lipid unsaturation on glycoside transport, Biochem. Biophys. Res. Comm. 38:617–623.PubMedCrossRefGoogle Scholar
  225. Wilson, G., and Fox, C. F., 1971, Biogenesis of microbial transport systems: Evidence for coupled incorporation of newly synthesized lipids and proteins into membrane, J. Mol. Biol. 55:49–60.PubMedCrossRefGoogle Scholar
  226. Wilson, O. H., and Holden, J. T., 1969a, Arginine transport and metabolism in osmotically shocked and unshocked cells of Escherichia coli W, J. Biol. Chem. 244:2737–2742.PubMedGoogle Scholar
  227. Wilson, O. H., and Holden, J. T., 1969b, Stimulation of arginine transport in osmotically shocked Escherichia coli W cells by purified arginine-binding protein fractions, J. Biol. Chem. 244:2743–2749.PubMedGoogle Scholar
  228. Wilson, T. H., Kashket, E. R., and Kusch, M., 1972, Energy coupling to lactose transport in Escherichia coli, in: The Molecular Basis of Biological Transport (J. F. Woessner Jr., and F. Huijing, eds.), Vol. 3, pp. 219–247, Academic Press, New York.Google Scholar
  229. Wilson, T. H., Kusch, M., and Kashket, E. R., 1970, A mutant in E. coli energy uncoupled for lactose transport; a defect in the lactose operon, Biochem. Biophys. Res. Comm. 40:1409–1414.PubMedCrossRefGoogle Scholar
  230. Winkler, H. H., and Wilson, T. H., 1966, The role of energy coupling in the transport of β-galactosides by Escherichia coli, J. Biol. Chem. 241:2200–2211.PubMedGoogle Scholar
  231. Wong, P. T. S., Kashket, E. R., and Wilson, T. H., 1970, Energy coupling in the lactose transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S. 65:63–69.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Dale L. Oxender
    • 1
  1. 1.Department of Biological ChemistryThe University of MichiganAnn ArborUSA

Personalised recommendations