Perturbation Theory in Superspace

  • Olivier Piguet
  • Klaus Sibold
Part of the Progress in Physics book series (PMP, volume 12)


In the axiomatic approach to perturbative quantum field theory (cf. for instance [R.12]) which we follow here one defines in one way or the other perturbative Green’s functions and shows then that they satisfy the required axioms—in particular those of relativistic co-variance, causality and unitarity—in the sense of perturbation theory. Perturbation is usually performed in powers of a coupling constant or in the powers of ħ which counts the number of loops of associated Feyman diagrams. When, as is often the case in supersymmetry, fields of canonical dimension zero are present, one expands also in the number of fields. If mass generation occurs, the expansion will be in √ħ in ħ- arising in a well-defined way from an ħ-expansion. All of these expansions are considered as formal ones, i.e. questions of convergence of the series considered are not answered, in fact, not even posed.


Feynman Rule Vertex Function External Momentum External Line Subtraction Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. III.1
    W. Zimmermann, The power counting theorem for Minkowski metric, Comm. Math. Phys. 11 (1968) 1MathSciNetADSCrossRefGoogle Scholar
  2. III.2
    N.N. Bogoliubov, D.V. Shirkov, Introduction to the theory of quantized fields, J. Wiley, New York (1959) 10Google Scholar
  3. III.3
    J.H. Lowenstein, E. Speer, Distributional limits of renormaliz-ed Feynman integrals with zero-mass denominators, Comm.Math. Phys. 47 (1976) 43MathSciNetADSMATHCrossRefGoogle Scholar
  4. III.4
    W. Zimmermann, Convergence of Bogoliubov’s method of renormali-zation in momentum space, Comm. Math. Phys. 15 (1969) 208MathSciNetADSMATHCrossRefGoogle Scholar
  5. III.5
    J. Honerkamp, F. Krause, M. Scheunert, M. Schlindwein, Perturbation theory in superfields, Phys. Lett. 53B (1974) 60ADSGoogle Scholar
  6. III.6
    D.M. Capper, G. Leibbrandt, On the degree of divergence of Feynman diagrams in superfield theories, Nucl. Phys. B85 (1975) 492ADSCrossRefGoogle Scholar
  7. III.7
    A. Salam, J. Strathdee, Feynman rules for superfields, Nucl. Phys. B86 (1975) 142MathSciNetADSCrossRefGoogle Scholar
  8. III.8
    K. Fujikawa, W. Lang, Perturbation calculations for the scalar multiplet in a superfield formulation, Nucl. Phys. B88 (1975) 61ADSCrossRefGoogle Scholar
  9. III.9
    A. A. Slavnov, Renormalization of supersymmetric gauge theories, Nucl. Phys. B97 (1975) 155ADSCrossRefGoogle Scholar
  10. III.10
    M.T. Grisaru, M. Roček, W. Siegel, Improved methods for super-graphs, Nucl. Phys. B159 (1979) 429ADSCrossRefGoogle Scholar
  11. III.11
    T.E. Clark, O. Piguet, K. Sibold, Renormalization theory in superspace, Ann. of Phys. 109 (1977) 418MathSciNetADSCrossRefGoogle Scholar
  12. III.12
    J. Lowenstein, W. Zimmermann, On the formulation of theories with zero-mass propagators, Nucl. Phys. B86 (1975) 77ADSCrossRefGoogle Scholar
  13. III.13
    J. Lowenstein, Convergence theorems for renormalized Feynman integrals with zero-mass propagators, Comm. Math. Phys. 47 (1976) 53MathSciNetADSMATHCrossRefGoogle Scholar
  14. III.14
    J.H. Lowenstein, W. Zimmermann, The power counting theorem for Feynman integrals with massless propagators, Comm. Math. Phys. 44 (1975) 73MathSciNetADSCrossRefGoogle Scholar
  15. III.15
    O. Piguet, A. Rouet, Supersymmetric BPHZ renormalization. I. SQED, Nucl. Phys. B99 (1975) 458ADSCrossRefGoogle Scholar
  16. III.16
    W. Zimmermann, Composite operators in the perturbation theory of renormalizable interactions, Ann. of Phys. 77 (1973) 536ADSCrossRefGoogle Scholar
  17. III.17
    J.H. Lowenstein, Differential vertex operations in Lagrangian field theory, Comm. Math. Phys. 24 (1971) 1MathSciNetADSMATHCrossRefGoogle Scholar
  18. III.15
    T.E. Clark, J.H. Lowenstein, Generalization of Zimmermann’s normal-product identity, Nucl. Phys. B113 (1976) 109MathSciNetADSCrossRefGoogle Scholar
  19. III.19
    Y.M.P. Lam, Perturbation Lagrangian theory for scalar fields-Ward-Takahashi identity and current algebra, Phys. Rev. D6 (1972) 2145ADSGoogle Scholar
  20. III.20
    Y.M.P. Lam, Perturbation Lagrangian theory for Dirac fields-Ward-Takahashi identity and current algebra, Phys. Rev. D6 (1972) 2161ADSGoogle Scholar
  21. III.21
    J.H. Lowenstein, Normal product methods in renormalized perturbation theory, Maryland, Technical Rep. 73-068, December 1972, Seminars on Renormalization Theory, Vol. IIGoogle Scholar
  22. III.22
    T.E. Clark, O. Piguet, K. Sibold, The gauge invariance of the super-current in SQED, Nucl. Phys. B169 (1980) 77MathSciNetADSCrossRefGoogle Scholar
  23. III.23
    J. Iliopoulos, B. Zumino, Broken supergauge symmetry and renormalization, Nucl. Phys. B76 (1974) 310ADSCrossRefGoogle Scholar
  24. III.24
    L. Bonora, P. Pasti, M. Tonin, Cohomologies and anomalies in supersymmetric theories, Padua University preprint DFPD 5/84Google Scholar
  25. III.25
    O. Piguet, Algebraic Poincarè Lemmata, (in preparation)Google Scholar

Copyright information

© Birkhäuser Boston 1986

Authors and Affiliations

  • Olivier Piguet
    • 1
  • Klaus Sibold
    • 2
  1. 1.Département de Physique ThéoriqueUniversité de GenèveGenèveSwitzerland
  2. 2.Max-Planck-Institut für Physik und AstrophysikWerner-Heisenberg-Institut für PhysikMünchenFederal Republic of Germany

Personalised recommendations