Specific Models in the Tree Approximation

  • Olivier Piguet
  • Klaus Sibold
Part of the Progress in Physics book series (PMP, volume 12)


In this chapter we introduce the models which will be discussed systematically in the sequel. A short account of the free theories is followed by the study of the tree approximation. Since our aim is eventually a treatment to all orders in perturbation theory we expose the material in this lowest order in a way which is best suited for the recursive extension to higher orders.


Gauge Transformation Mass Term Contact Term Supersymmetry Transformation Gauge Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. II.1
    F.A. Berezin, The method of second quantization, Acad. Press, New York (1966)MATHGoogle Scholar
  2. II.2
    A. Salam, J. Strathdee, Superfields and Fermi-Bose-symmetry, Phys. Rev. D11. (1975) 1521MathSciNetADSGoogle Scholar
  3. II.3
    L. O’raifeartaigh, Spontaneous symmetry breaking for chiral super-fields, Nucl. Phys. B96 (1975) 331MathSciNetADSCrossRefGoogle Scholar
  4. II.4
    J. Wess, B. Zumino, A Lagrangian model invariant under super-gauge transformations, Phys. Lett. 49B (1974) 52ADSGoogle Scholar
  5. II.5
    A. Salam, J. Strathdee, On Goldstone fermions, Phys. Lett. 49B (1974) 465MathSciNetADSGoogle Scholar
  6. II.6
    J. Wess, B. Zumino, Supergauge invariant extension of quantum electrodynamics, Nucl. Phys. B78 (1974) 1MathSciNetADSCrossRefGoogle Scholar
  7. II.7
    S. Ferrara, O. Piguet, Perturbation theory and renormalization of supersymmetric Yang-Mills theories, Nucl. Phys. B93 (1975) 261ADSCrossRefGoogle Scholar
  8. II.8
    B. de Wit, D.Z. Freedman, Combined supersymmetric and gauge-invariant field theories, Phys. Rev. D12 (1975) 2286ADSGoogle Scholar
  9. II.9
    P. Fayet, J. Iliopoulos, Spontaneously broken supergauge symmetries and Goldstone spinors, Phys. Lett. 51B (1974) 961Google Scholar
  10. II.10
    A. Salam, J. Strathdee, Supersymmetric and non-Abelian gauges, Phys. Lett. 51B (1974) 353MathSciNetADSGoogle Scholar
  11. II.11
    S. Ferrara, B. Zumino, Supergauge invariant Yang-Mills theories, Nucl. Phys. B79 (1974) 413ADSGoogle Scholar
  12. II.12
    C. Becchi, A. Rouet, R. Stora, Renormalization of gauge theories, Ann. of Phys. 98 (1976) 287MathSciNetADSCrossRefGoogle Scholar
  13. II.13
    O. Piguet, K. Sibold, Renormalization of N=l supersymmetric Yang-Mills theories. I. The classical theory, Nucl. Phys. B197 (1982) 257ADSCrossRefGoogle Scholar
  14. II.14
    O. Piguet, K. Sibold, Gauge independence in N=l supersymmetric Yang-Mills theories, Nucl. Phys. B248 (1984) 301ADSCrossRefGoogle Scholar
  15. II.15
    S. Ferrara, B. Zumino, Transformation properties of the super-current, Nucl. Phys. B87 (1975) 207ADSCrossRefGoogle Scholar
  16. II.16
    T.E. Clark, O. Piguet, K. Sibold, The renormalized supercurrents in supersymmetric QED, Nucl. Phys. B172 (1980) 201MathSciNetADSCrossRefGoogle Scholar
  17. II.17
    O. Piguet, K. Sibold, The supercurrent in SYM. I. The classical approximation, Nucl. Phys. B196 (1982) 428ADSCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1986

Authors and Affiliations

  • Olivier Piguet
    • 1
  • Klaus Sibold
    • 2
  1. 1.Département de Physique ThéoriqueUniversité de GenèveGenèveSwitzerland
  2. 2.Max-Planck-Institut für Physik und AstrophysikWerner-Heisenberg-Institut für PhysikMünchenFederal Republic of Germany

Personalised recommendations