Recent Advances in Parameteridentification Techniques for O.D.E.

  • H. G. Bock
Part of the Progress in Scientific Computing book series (PSC, volume 2)


Parameteridentification (PI) techniques have found a rapidly increasing interest in the past years, particularly in biology, chemistry and other sciences, where a quantitative description of a complex process can often not be derived from investigations into isolated subsystems by in vitro experiments, and observations of the complete process in vivo are the only source of information. At the same time, the development of conceptionally new numerical methods has promoted substantial improvements in the treatment of such problems.


Multiple Shooting Condensed System Single Shooting Multipoint Boundary Forward Recursion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.G. Bock: Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics, in K. H. Ebert, P. Deuflhard, W. Jäger (eds.), Modelling of Chemical Reaction Systems, Springer Series in Chemical Physics 18, 102, Heidelberg (1981)Google Scholar
  2. [2]
    V. Bär: Ein Kollokationsverfahren zur numerischen Lösung von Mehrpunktrandwertaufgaben mit Schalt-und Sprungbedingungen, work done in preparation of a diploma thesisGoogle Scholar
  3. [3]
    J. Schiöder, H.G. Bock: Identification of Rate Constants in Bistable Chemical Reactions, these proceedingsGoogle Scholar
  4. [4]
    Th. Reiners: Numerische Behandlung inverser Probleme der Geophysik, work done in preparation of a diploma thesisGoogle Scholar
  5. [5]
    V. Pereyra, H.B. Keller, W.H.K. Lee: Computational Methods for Inverse Problems in Geophysics: Inversion of Travel Time Observations, Phys. Earth Planet. Inter. 21, 120 (1980)CrossRefGoogle Scholar
  6. [6]
    H.G. Bock: Numerical Solution of Nonlinear Multipoint Boundary Value Problems with Application to Optimal Control, ZAMM 58, 407 (1978)MathSciNetCrossRefGoogle Scholar
  7. [7]
    H.G. Bock: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen (in preparation)Google Scholar
  8. [8]
    U. Nowak, P. Deuflhard: Towards Parameteridentification for Large Chemical Reaction Systems, these proceedingsGoogle Scholar
  9. [9]
    J. Milstein: Fitting Multiple Trajectories Simultaneously to a Model of Inducible Enzyme Synthesis, Math. Biosci. 40, 175 (1978)MATHCrossRefGoogle Scholar
  10. [10]
    J. Milstein: Error Estimates for Rate Constants of Inverse Problems, SIAM J. Appl. Math. 35, 479 (1978)MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    C.W. Gear: Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, Englewood Cliffs (1971)Google Scholar
  12. [12]
    J.H. Bremermann: A Method of Unconstrained Global Optimization, Math. Biosci. 9, 1 (1970)MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    R. Bulirsch: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung, Carl-Cranz-Gesellschaft, Tech. Rpt. (1971)Google Scholar
  14. [14]
    R. Bulirsch, J. Stoer: Numerical Treatment of Ordinary Differential Equations by Extrapolation Methods, Numer. Math. 8, 1 (1966)MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    H.B. Keller: Numerical Methods for Two-Point Boundary-Value Problems, London, Blaisdell (1968)Google Scholar
  16. [16]
    M.R. Osborne: On Shooting Methods for Boundary Value Problems, J. Math. Anal. Appl. 27, 417 (1969)MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    J. Stoer, R. Bulirsch: Einführung in die Numerische Mathematik II, Berlin, Heidelberg, New York, Heidelberg (1973)Google Scholar
  18. [18]
    P. Deuflhard: Recent Advances in Multiple Shooting Techniques, in: Computational Techniques for Ordinary Differential Equations (Gladwell/ Sayers, eds.)Google Scholar
  19. [19]
    R. England: A Program for the Solution of Boundary Value Problems for Systems of Ordinary Differential Equations, U.K.A.E.A. Research Group, Abingdon, Tech. Rpt. CLM/PDN 3/73 (1975)Google Scholar
  20. [20]
    M. Lentini, V. Pereyra: An Adaptive Finite Difference Solver for Nonlinear Two Point Boundary Value Problems with Mild Boundary Layers, SIAM J. Numer. Anal. 14, 91 (1977)MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    U. Ascher, J. Christiansen, R.D. Russell: A Collocation Solver for Mixed Order Systems of Boundary Value Problems, Math. Comp. 33 (1979)Google Scholar
  22. [22]
    C. de Boor, B. Swartz: Collocation at Gaussian Points, SIAM J. Numer. Anal. 10, 582 (1973)MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    R.D. Russell: Collocation for Systems of Boundary Value Problems, Numer. Math. 23, 119 (1974)MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    R. Weiss: The Application of Implicit Runge-Kutta and Collocation Methods to Boundary Value Problems, Math. Comp. 28, 449 (1974)MathSciNetMATHGoogle Scholar
  25. [25]
    E.D. Dickmanns, K.H. Well: Approximate Solution of Optimal Control Problems Using Third Order Hermite Polynomial Functions, Springer Lect. Notes Comp. Sci. 27, 158 (1975)CrossRefGoogle Scholar
  26. [26]
    H.G. Bock: Numerical Solution of Parameter Estimation Problems by Boundary Value Solvers, Workshop Numerical Boundary Value Problems, Vancouver, Collected Lecture Notes (1980)Google Scholar
  27. [27]
    U. Ascher, R. Weiss: Collocations for Singular Perturbation Problems I: First Order Systems with Constant Coefficients, Dept. Comp. Sci., University of British Columbia, Vancouver, Tech. Rpt. 81-2Google Scholar
  28. [28]
    H.G. Bock: Zur numerischen Behandlung zustandsbeschränkter Steuerungsprobleme mit Mehrzielmethode und Homotopieverfahren, ZAMM 57, 266 (1977)MathSciNetGoogle Scholar
  29. [29]
    P. Deuflhard, V. Apostolescu: An Underrelaxed Gauss-Newton Method for Equality Constrained Nonlinear Least Squares Problems, Springer Lecture Notes Control Inf. Sci. 7, 22 (1978)MathSciNetCrossRefGoogle Scholar
  30. [30]
    P. Deuflhard, G. Heindl: Affine Invariant Convergence Theorems for Newton’s Method and Extension to Related Methods, SIAM J. Numer. Anal. 16, 1 (1979)MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    H.G. Bock: A Multiple Shooting Method for Parameter Identification in Systems of Nonlinear Differential Equations, GAMM Conference, Brussels, (1978)Google Scholar
  32. [32]
    P. Deuflhard: A Modified Newton Method for the Solution of Ill-Conditioned Systems of Nonlinear Equations with Application to Multiple Shooting, Numer. Math. 22, 289 (1974)MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    P. Deuflhard: A Relaxation Strategy for the Modified Newton Method, Springer Lecture Notes 477, 59 (1975)MathSciNetGoogle Scholar
  34. [34]
    J. Stoer: On the Numerical Solution of Constrained Least Squares Problems, SIAM J. Numer. Anal. 8, 382 (1971)MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    P. Businger, G.H. Golub: Linear Least Squares Solutions by Householder Transformations, Numer. Math. 7, 269 (1965)MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    P. Deuflhard, W. Sautter: On Rank Deficient Pseudo-Inverses, J. Lin. Alg. Appl. 22, 91 (1980)MathSciNetCrossRefGoogle Scholar
  37. [37]
    R.M.M. Mattheij: The Conditioning of Linear Boundary Value Problems, to appear in SIAM J. Numer. Anal.Google Scholar
  38. [38]
    P. Deuflhard, G. Bader: Multiple Shooting Techniques Revisited, these proceedingsGoogle Scholar
  39. [39]
    J.M. Varah: Alternate Row and Column Elimination for Solving Certain Linear Systems, SIAM J. Numer. Anal. 13, 71 (1976)MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    C. de Boor, R. Weiss: SOLVEBLOK:A Package for Solving almost Block Diagonal Linear Systems, ACM Trans. Math. Softw. 6, 80 (1980)MATHCrossRefGoogle Scholar
  41. [41]
    G. Bader, P. Deuflhard: A Semi-Implicit Mid-Point Rule for Stiff Systems in Ordinary Differential Equations, SFB 123, Heidelberg, Tech. Rpt. 114 (1981)Google Scholar
  42. [42]
    P. Zwaga: Private Communication (1977)Google Scholar
  43. [43]
    F. Heinmets: Analogue Computer Analysis of a Model System for the Induced Enzyme Synthesis, J. Theor. Biol. 6, 60 (1964)CrossRefGoogle Scholar
  44. [44]
    J. Swartz, J.H. Bremermann: Discussion of Parameter Estimation in Biological Model ling Algorithms for Estimation and Evaluation of the Estimates, J. Math. Biol. 1, 241 (1975)MATHCrossRefGoogle Scholar
  45. [45]
    D. Garfinkel: A Simulation Study of the Effect on Simple Ecological Systems of Making Rate of Increase of Population Density Dependent, J. Theoret. Biol. 14, 67 (1967)Google Scholar

Copyright information

© Birkhäuser Boston 1983

Authors and Affiliations

  • H. G. Bock

There are no affiliations available

Personalised recommendations