Multiple Shooting Techniques Revisited

  • P. Deuflhard
  • G. Bader
Part of the Progress in Scientific Computing book series (PSC, volume 2)


The present article is a short summary or a more extensive presentation — see [9]. Multiple shooting (MS) techniques as developed in [4,16,19,5] are one of the popular approaches for the numerical solution of (in general nonlinear) boundary value problems (BVP’s) for ordinary differential equations (ODE’s). For alternative approaches see e.g. [1,14]. For a recent survey on MS techniques see [6], where also further references and historical remarks can be found. The application of MS techniques to parameter identification has been nicely developed in [2]. In fact, the efficient and economic implementation of a parameter identification algorithm has motivated the present study. Even though, for the purpose of simplification, most of the presentation is confined to the standard BVP case (without explicit dependence on parameters), the results also apply — mutatis mutandis — to the parameter identification case.


Condition Number Multiple Shooting Boundary Condition Iterative Refinement Sensitivity Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    U. Ascher, I. Christiansen, R.D. Russell: A Collocation Solver for Mixed Order Systems of Boundary Value Problems. Math. Comp. 33, 659–679 (1979)MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    H.G. Bock: Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics. Springer Series Chemical Physics 18, section 8, p.102–125 (1981).CrossRefGoogle Scholar
  3. [3]
    C.G. Broyden: A class of methods for solving non-linear simultaneous ecuations. Math. Comp. 19, 577–583 (1965).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    R. Bulirsch: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Carl-Cranz-Gesellschaft: Tech.Rep. (Oct. 1971).Google Scholar
  5. [5]
    P. Deuflhard: Non-linear Equation Solvers in Boundary Value Problem Codes. Sprinqer Lecture Notes Computer Science 76, (Childs et al., ed.), p. 40–66 (1979).Google Scholar
  6. [6]
    P. Deuflhard: Recent Advances in Multiple Shooting Techniques. In: Computational Techniques for Ordinary Differential Equations (Gladwell/ Sayers, ed.), Section 10, p.217–272. London, New York: Academic Press 1980).Google Scholar
  7. [7]
    P. Deuflhard: Order and Stepsize Control in Extrapolation Methods. Universität Heidelberg, SFB 123: Tech. Rep. 93 (1980). To appear in Numer. Math. (1983).Google Scholar
  8. [8]
    P. Deuflhard, V. Apostolescu: An Underrelaxed Gauss-Newton Method for Equality Constrained Nonlinear Least Squares Problems. Springer Lecture Notes Control Inf.Sci. 7, 22–32 (1978).MathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Deuflhard, G. Bader: Multiple Shooting Techniques Revisited. University of Heidelberg, SFB 123: Tech. Rep. 163 (June 1982).Google Scholar
  10. [10]
    P. Deuflhard, W. Sautter: On Rank-Deficient Pseudo-Inverses. J. Lin. Alg. Appl. 29, 91–111 (1980).MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    H.J. Diekhoff, P. Lory, H.J. Oberle, H.J. Pesch, P. Rentrop, R. Seydel: Comparing Routines for the Numerical Solution of Initial Value Problems for Ordinary Differential Equations in Multiple Shooting. Numer.Math. 27, 449–469 (1977).MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    M. Hermann, H. Berndt: RWPM: A Multiple Shooting Code for Nonlinear Two-Point Boundary Value Problems. Forschungsergebnisse der Friedrich-Schi lier-Universität Jena: Nr. N/81/27 (May 1981).Google Scholar
  13. [13]
    M. Jankowski, H. Wozniakowski: Iterative Refinement Implies Numerical Stability. BIT 17, 303–311 (1977).MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    M. Lentini, V. Pereyra: An adaptive finite difference solver for nonlinear two-point boundary value problems with mild boundary layers. SIAM J. Numer. Anal. 14, 91–111 (1977).MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    R.M.M. Mattheij: The Conditioning of Linear Boundary Value Problems. To appear in SIAM J. Numer. Anal. (1982).Google Scholar
  16. [16]
    M.R. Osborne: On shooting methods for boundary value problems. J.Math. Anal. Appl. 27, 417–433 (1969).MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    L.K. Schubert: Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian. Math. Comp. 24, 27–30 (1970).MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    R.D. Skeel: Iterative Refinement Implies Numerical Stability for Gaussian Elimination. Math.Comp. 35, 817–832 (1980).MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    J. Stoer, R. Bulirsch: Einführung in die Numerische Mathematik II. Berlin, Heidelberg, New York: Springer (1st ed., 1973).MATHGoogle Scholar
  20. [20]
    J.M. Varah: Alternate row and column elimination for solving certain linear systems. SIAM J. Numer. Anal. 13, 71–75 (1976).MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    R. Weiss: The Convergence of Shooting Methods. BIT 13, 470–475 (1973).MATHCrossRefGoogle Scholar
  22. [22]
    J.H. Wilkinson: The Algebraic Eigenvalue Problem. Oxford: Clarendon Press (1965).MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 1983

Authors and Affiliations

  • P. Deuflhard
  • G. Bader

There are no affiliations available

Personalised recommendations