Regularization Techniques for Inverse Problems in Molecular Biology

  • Stephen W. Provencher
  • Robert H. Vogel
Part of the Progress in Scientific Computing book series (PSC, volume 2)


In molecular biology, as in most natural sciences, the number of indirect experiments involving ill-posed inverse problems is rapidly increasing. Three of the most important types of inverse problems involve either (a) severely ill-posed linear problems (e.g., Laplace transforms in relaxation or correlation experiments); (b) very large, and perhaps nonlinear, problems (e.g., estimation of three-dimensional structure from x-ray diffraction or electron microscopy); or (c) parameter estimation involving computationally complex models (e.g., multicomponent subnanosecond fluorescence decay strongly convoluted with the instrument response or excitation function).


Tilt Angle Spherical Harmonic Computer Assisted Tomography Limited Angular Range Prior Statistical Knowledge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).Google Scholar
  2. [2]
    R.N. Bracewell, Strip integration in radioastronomy, Australian J. Phys. 9, 198 (1956).MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    D.M. Brink and G.R. Satchler, Angular Momentum (Clarendon Press, Oxford, 1968).Google Scholar
  4. [4]
    R.K. Bryan, Ph. D. Dissertation, University of Cambridge (1980).Google Scholar
  5. [5]
    R.K. Bryan, M. Bansal, W. Folkhard, C. Nave, & D.A. Marvin (in preparation).Google Scholar
  6. [6]
    N.V. Cohan, The spherical harmonics with the symmetry of the icosahedral group, Proc. Cambr. Phil. Soc. 54, 28 (1958).MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    B.R. Frieden, Restoring with maximum likelihood and maximum entropy, J. Opt. Soc. Amer. 62, 511 (1972).CrossRefGoogle Scholar
  8. [8]
    G.H. Golub and V. Pereyra, The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate, SIAM J. Numer. Anal. 10, 413 (1973).MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Z. Kam, The reconstruction of structure from electron micrographs of randomly oriented particles, J. Theor. Biol. 82, 15 (1980).CrossRefGoogle Scholar
  10. [10]
    H. Lachmann, New methods of parameter identification in kinetics of closed and open reaction systems, this volume.Google Scholar
  11. [11]
    C.L. Lawson and R.J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, 1974).MATHGoogle Scholar
  12. [12]
    P.M. Morse and H. Feshbach, Methods Of Theoretical Physics, Part II (McGraw-Hill, New York, 1953).MATHGoogle Scholar
  13. [13]
    R.L. Obenchain, Classical F-tests and confidence regions for ridge regression, Technometrics 19, 429 (1977).MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    P.F. Price, A comparison of least-squares and maximum-likelihood estimators for counts of radiation quanta which follow a Poisson distribution, Acta Cryst. A35, 57 (1979).Google Scholar
  15. [15]
    S.W. Provencher, Inverse problems in polymer characterization: Direct analysis of polydispersity with photon correlation spectroscopy, Makromol. Chem. 180, 201 (1979).Google Scholar
  16. [16]
    S.W. Provencher, A constrained regularization method for inverting data represented by linear algebraic or integral equations, Comput. Phys. Commun. 27, 213 (1982).CrossRefGoogle Scholar
  17. [17]
    S.W. Provencher, CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations, Comput. Phys. Commun. 27, 229 (1982).CrossRefGoogle Scholar
  18. [18]
    S.W. Provencher, in Photon Correlation Techniques, edited by E.O. Schulz-Dubois (Springer, Heidelberg, 1983).Google Scholar
  19. [19]
    S.W. Provencher and R.H. Vogel, Information loss with transform methods in system identification: A new set of transforms with high information content, Math. Biosci. 50, 251 (1980).MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    A. Ruhe and P.A. Wedin, Algorithms for separable nonlinear least squares problems, SIAM Rev. 22, 318 (1980).MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    H. Stark, Sampling theorems in polar coordinates, J. Opt. Soc. Amer. 69, 1519 (1979).MathSciNetCrossRefGoogle Scholar
  22. [22]
    O.N. Strand and E.R. Westwater, On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature, J. Assoc. Comput. Mach. 15, 100 (1968).MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    P.N.T. Unwin and R. Henderson, Molecular structure determination by electron microscopy of unstained crystalline specimens, J. Mol. Biol. 94, 425 (1975).CrossRefGoogle Scholar
  24. [24]
    R.H. Vogel, SPLM0D Users Manual, EMBL Technical Report DA06, European Molecular Biology Laboratory, Heidelberg, 1983.Google Scholar
  25. [25]
    R.W. Wijnaendts van Resandt, R.H. Vogel, and S.W. Provencher, Double beam fluorescence lifetime spectrometer with subnanosecond resolution: Application to aqueous tryptophan, Rev. Sci. Instr. 53, 1392 (1982).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1983

Authors and Affiliations

  • Stephen W. Provencher
  • Robert H. Vogel

There are no affiliations available

Personalised recommendations