The Inverse Problem in Geoelectrical Prospecting Assuming a Horizontally Layered Half-Space

  • E. Mundry
Part of the Progress in Scientific Computing book series (PSC, volume 2)


The Marquardt method is used for the inversion of geoelectrical measurements for a stratified half-space (determination of layer thicknesses and resistivities). Equivalent models are obtained from eigenvalue analysis of the Gaussian matrix.


Inverse Problem Apparent Resistivity Equivalent Model Ridge Regression Gaussian Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Bosum: Ein automatisches Verfahren zur Interpretation magnetischer Anomalien nach der Methode der kleinsten Quadrate. Geophys. Prospecting 16, 107–126 (1968).CrossRefGoogle Scholar
  2. [2]
    S. Coen, M.W.H. Yu: The inverse problem of the direct current conductivity profile of a layered earth. Geophysics 46, 1702–1713 (1981).CrossRefGoogle Scholar
  3. [3]
    D.P. Ghosh: Inverse filter coefficients for the computation of apparent resistivity standard curves for a horizontally stratified earth. Geophys. Prospecting 19, 769–775 (1971).CrossRefGoogle Scholar
  4. [4]
    S.-E. Hjelt: Performance comparison of non-linear optimization methods applied to interpretation in magnetic prospecting. Geophysica 13, 143–166 (1975).Google Scholar
  5. [5]
    J.R. Inman: Resistivity inversion with ridge regression. Geophysics 40, 798–817 (1975).CrossRefGoogle Scholar
  6. [6]
    D.D. Jackson: Interpretation of inaccurate, insufficient and inconsistent data. Geophys. J.R. astr. Soc. 28, 970–109 (1972).Google Scholar
  7. [7]
    H.K. Johansen: A man/computer interpretation system for resistivity soundings over a horizontally stratified earth. Geophys. Prospecting 25, 667–691 (1972).CrossRefGoogle Scholar
  8. [8]
    D.L.B. Jupp, K. Vozoff: Stable iterative methods for the inversion of geophysical data. Geophys. J.R. astr. Soc. 42, 957–976 (1975).CrossRefGoogle Scholar
  9. [9]
    O. Koefoed: Geosounding Principles, 1 — Resistivity Sounding Measurements. Elsevier, Amsterdam (1979).Google Scholar
  10. [10]
    D.W. Marquardt: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. indust. Appl. Math. 11, 431–441 (1963).MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    W. Müller: Inversion by simultaneous fitting of apparent resistivity and phase angle. Acta Geodaet., Geophys. et Montanist. Acad. Sci. Hung. 12, 215–222 (1977).Google Scholar
  12. [12]
    E. Mundry, U. Dennert: Das Umkehrproblem in der Geoelektrik. Geol. Jb. E 19, 19–38 (1980).Google Scholar
  13. [13]
    D.W. Oldenburg: The interpretation of direct current resistivity measurements. Geophysics 43, 610–625 (1978).CrossRefGoogle Scholar
  14. [14]
    L.B. Pedersen: Interpretation of potential field data, a generalized inverse approach. Geophys. Prospecting 25, 199–230 (1977).CrossRefGoogle Scholar
  15. [15]
    C.L. Pekeris: Direct method of interpretation in resistivity prospecting. Geophysics 5, 31–46 (1940).CrossRefGoogle Scholar
  16. [16]
    F.T. Wu: The inverse problem of magnetotelluric sounding. Geophysics 33, 972–979 (1968).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1983

Authors and Affiliations

  • E. Mundry

There are no affiliations available

Personalised recommendations