Identification of Nonlinear Soil Physical Parameters from an Input-Output Experiment

  • Ulrich Hornung
Part of the Progress in Scientific Computing book series (PSC, volume 2)


In the field of parameter identification in parabolic differential equations some theoretical and numerical results have been obtained in recent years. The linear heat equation with linear or nonlinear boundary conditions was studied by Cannon/Zachmann [1982]. Here the fact that the heat equation can be solved explicitely was used for various problems with overspecified boundary data to show existence and uniqueness of some unknown parameters. Nonlinear problems of the type
$${\partial _{\rm{t}}}{\rm{u}}\;{\rm{ = }}\;{\partial _{\rm{x}}}({\rm{D(u)}}{\partial _{{\rm{x }}}}{\rm{u)}}$$
were treated by Cannon/DuChateau [1980], who showed that in some class of functions D( ) there exists at least one that fits overspecified boundary data best in a certain sense. DuChateau [1981] proved uniqueness of this function in a slightly different class.


Porous Medium Hydraulic Conductivity Unsaturated Soil Nonlinear Boundary Condition Nonlinear Diffusion Equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alt, H.W., S. Luckhaus: Quasilinear Elliptic-Parabolic · Differential Equations. Sonderforschungsbereich 123, Heidelberg, Preprint 136 (1982).Google Scholar
  2. [2]
    Cannon, J.R., P. DuChateau: An inverse problem for a nonlinear diffusion equation. SIAM J. Appl. Math. 39 (1980) 272–289.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Cannon, J.R., D. Zachmann: Parameter determination in parabolic partial differential equations from over-specified boundary data. Int. J. Engng. Sci. 20 (1982) 779–788.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    DuChateau, P.: Monotonicity and uniqueness results in identifying an unknown coefficient in a nonlinear diffusion equation. SIAM J. Appl. Math. 41 (1981) 310–323.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Feddes, R.A., P.J. Kowalik, H. Zaradny: Simulation of Field Water Use and Crop Yield. Centre for Agricultural Publishing and Documentation, Wageningen, 1978.Google Scholar
  6. [6]
    Haverkamp, R., M. Vauclin: A comparative study of three forms of the Richard equation used for predicting one-dimensional infiltration in unsaturated soil. Soil Sci. Soc. Amer. J. 45 (1981) 13–20.CrossRefGoogle Scholar
  7. [7]
    Hillel, D.: Fundamentals of Soil Physic. Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980.Google Scholar
  8. [8]
    Hornung, U., W. Messing: Simulation of two-dimensional saturated/unsaturated flows with an exact water balance. In: A. Verruijt, F.B.J. Barends (Eds.) “Flow and Transport in Porous Media”, A.A. Balkema, Rotterdam (1981) 91–96.Google Scholar
  9. [9]
    Hornung, U., W. Messing: Identification of soil parameters for an infiltration problem. In: K.P. Holz, U. Meissner, W. Zielke, C.A. Brebbia, G. Pinder, W. Gray (Eds.) “Finite Elements in Water Resources”, Springer-Verlag, Berlin, Heidelberg, New York (1982) 18.15–18.24.Google Scholar
  10. [10]
    Kovács, G.: Seepage Hydraulics. Elsevier, Amsterdam, Oxford, New York (1981).Google Scholar
  11. [11]
    Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Res. Res. 12 (1976) 513–522.CrossRefGoogle Scholar
  12. [12]
    Tait, R.J.: An inverse problem arising in fluid flow in a porous medium. Int. J. Engng. Sci. 18 (1980) 161–167.MATHCrossRefGoogle Scholar
  13. [13]
    van Genuchten, R.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J. 44 (1980) 892–898.CrossRefGoogle Scholar
  14. [14]
    van Genuchten, R.: Private Communication (1982).Google Scholar
  15. [15]
    Zachmann, D.W., P.C. DuChateau, A. Klute: The calibration of the Richards flow equation for a draining column by parameter identification. Soil Sci. Soc. Amer. J. 45 (1981) 1012–1015.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1983

Authors and Affiliations

  • Ulrich Hornung

There are no affiliations available

Personalised recommendations