Some Inverse Problems in Electrocardiology

  • Piero Colli Franzone
Part of the Progress in Scientific Computing book series (PSC, volume 2)


We shall first say something about the clinical framework of the problems. In many countries automated instruments are employed to record potential Body Surface Maps (BSM); for instance one of these instruments [13] records 240 potential values of the electric cardiac field on the human body surface for about 400 time instants of the cardiac beat.


Inverse Problem Transfer Matrix Fiber Direction Generalize Cross Validation Intracellular Action Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderssen R., Bloomfield P.: A time series approach to numerical differentiation. Technometrics 16, 69–75, 1974.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Baruffi S., Spaggiari S., Stilli D., Musso E., Taccardi B.: The importance of fiber orientation in determining the features of cardiac electric field. In Modern Electrocardiology, Z. Antaloczy ed., Excerpta Medica, pp. 89–92, Amsterdam 1978.Google Scholar
  3. [3]
    Colli Franzone P., Guerri L., Viganotti C., Macchi E., Baruffi S., Spaggiari S., Taccardi B.: Potential fields generated by oblique dipole layers modeling excitation wavefront in the anisotropic myocardium. Comparison with potential fields elicited by paced dog hearts in a volume conductor. To appear on Circulation Research.Google Scholar
  4. [4]
    Colli Franzone P., Guerri L., Viganotti C., Macchi E., Baruffi S., Spaggiari S., Taccardi B.: A mathematical model simulating the anisotropy of cardiac electric sources.In Electrocardiology 81, Z. Antaloczy, I. Preda eds., pp. 113–118, Akdémiai Kiado, Budapest 1981.Google Scholar
  5. [5]
    Colli Franzone P., Guerri L., Taccardi B., Tentoni S., Viganotti C.: Cardiac fibers orientation and potential fields: model studies. In Proceeding of the Int. Cong. on Electrocardiography, Tokyo, 1982.Google Scholar
  6. [6]
    Colli Franzone P., Guerri L., Viganotti C.: Oblique dipole layer potentials applied to electrocardiology. To appear on Journal of Math. Biol.Google Scholar
  7. [7]
    Colli Franzone P., Guerri L., Magenes E.: Oblique double layer potentials for the direct and inverse problems of electrocardiology. Forthcoming paper.Google Scholar
  8. [8]
    Colli Franzone P., Guerri L., Taccardi B., Viganotti C.: The direct and inverse potential problems in electrocardiology. Numerical aspects of some regularization methods and application to data collected in isolated dog heart experiments. Pubbl. N. 222, of the Institute of Numerical Analysis, I.A.N.-C.N.R., Pavia 1979.Google Scholar
  9. [9]
    Colli Franzone P., Guerri L., Viganotti C.: The inverse potential problem applied to the human case. In Models and Measurements of cardiac electric field, E. Schubert ed., pp. 19–33, Plenum Pub. Corp., 1982.Google Scholar
  10. [10]
    Colli Franzone P., Guerri L., Taccardi B., Viganotti C.: A numerical procedure to inversely compute epicardial potentials from body surface maps applied to a normal human subject. In Computer Cardiology, pp. 187–190, IEEE Computer Society Press, 1981.Google Scholar
  11. [11]
    Colli Franzone P., Magenes E.: On the inverse potential problem of electrocardiology. Calcolo XVI, IV, pp. 459–538, 1979.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Corbin L.V. II, Scher A.M.: The canine heart as an electrocardiographic generator: Dependence on cardiac cell orientation. Circ. Res. 41, pp. 58–67, 1977.Google Scholar
  13. [13]
    Cottini C., Dotti D., Gatti E., Taccardi B.: A 240-probe instrument for mapping cardiac potentials. In the electrical field of the heart P. Rijlant ed., pp. 99–102, Presses Académiques Européennes, 1976.Google Scholar
  14. [14]
    Golub G., Heath M., Wahba G.: Generalized cross validation as a method for choosing a good ridge parameter. Technometrics 21, 2, pp. 215–223, 1979.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Golub G., Reinsch C.: Singular value decomposition and least squares solutions. Num. Math., 14, pp. 403–420, 1970.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Leonov A.S.: Justification of the choice of the regularization parameter according to quasi-optimality and quotient criteria. U.S.S.R. Comput.Math. Phys., 18, pp. 1–15, 1979.Google Scholar
  17. [17]
    Lions J.L., Magenes E.: Non homogeneous boundary value problems and applications, vol. 1, Grundlehren 181, Springer Verlag, Berlin, 1971.Google Scholar
  18. [18]
    Plonsey R., Fleming D.: Bioelectric phenomena. Mac Graw-Hill, New York 1969.Google Scholar
  19. [19]
    Tykhonov A.N., Arsenine V.: Méthodes de résolution de problémes mal posée. Ed. Mir, Moscow, 1976.Google Scholar
  20. [20]
    Van Loan C.: Generalizing the singular value decomposition. SIAM J. Numer. Anal., 13, 1, pp. 76–83, 1976.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Wahba G.: Practical approximate solution to linear operator equation when the data are noisy. SIAM J. Numer. Anal., 14, 4, 1977.MathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1983

Authors and Affiliations

  • Piero Colli Franzone

There are no affiliations available

Personalised recommendations