Advertisement

Inverse Problem of Quantal Potential Scattering at Fixed Energy

  • H. Fiedeldey
  • R. Lipperheide
  • S. Sofianos
Part of the Progress in Scientific Computing book series (PSC, volume 2)

Abstract

The inverse problem of quantal scattering is a problem of long standing. However, despite an extensive literature (cf. the reviews [1, 5]) it seems that only recently has interest been directed toward practical applications, at least as far as the fixed-energy case is concerned [6, 8, 10, 12, 14]. The present work is a contribution to these efforts.

Keywords

Inverse Problem Reference Potential Scattering Function Inversion Scheme Tering Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Z.S. Agranovich and V.A. Marchenko, The Inverse Problem of Scattering Theory (Gordon and Beach, New York, 1963).MATHGoogle Scholar
  2. [2]
    V. de Alfaro and T. Regge, Potential Scattering (North-Holland, Amsterdam, 1965).MATHGoogle Scholar
  3. [3]
    V. Bargmann, Revs. Modern Phys. 21, 488 (1949).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    G. Burdet, M. Giffon, and E. Predazzi, Nuovo cimento 26, 1337 (1965).MathSciNetGoogle Scholar
  5. [5]
    K. Chadan and P.C. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer, New York, Berlin, Heidelberg, 1977).MATHGoogle Scholar
  6. [6]
    C. Coudray, Lett. Nuovo cimento 19, 319 (1977)CrossRefGoogle Scholar
  7. [7]
    J.R. Cox and K.W. Thompson, J. Math. Phys. 11, 805 (1970).MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    P. Fröbrich, R. Lipperheide, and H. Fiedeldey, Phys. Rev. Lett. 43, 1147 (1979).CrossRefGoogle Scholar
  9. [9]
    R. Lipperheide and H. Fiedeldey, Z. Physik A 286, 45 (1978).CrossRefGoogle Scholar
  10. [10]
    R. Lipperheide, H. Fiedeldey, H. Haberzettl, and K. Naidoo, Phys. Lett. 82B, 39 (1969).Google Scholar
  11. [11]
    R. Lipperheide and H. Fiedeldey, Z. Physik A 301, 81 (1981).CrossRefGoogle Scholar
  12. [12]
    V.V. Malyarov, I.V. Poplavskii, and M.N. Popushoi, Sov. J. Nucl. Phys. 22, 445 (1976) and 25, 38 (1977); Sov. Phys. JETP 41, 210 (1975).Google Scholar
  13. [13]
    W.H. Miller, J. Chem. Phys. 51, 3631 (1969).MathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Münchow and W. Scheid, Phys. Rev. Lett. 44, 1299 (1980).MathSciNetCrossRefGoogle Scholar
  15. [15]
    R.G. Newton, J. Math. Phys. 3, 75 (1962).MATHCrossRefGoogle Scholar
  16. [16]
    R.G. Newton, J. Math. Phys. 8, 1566 (1967).MATHCrossRefGoogle Scholar
  17. [17]
    T. Regge, Nuovo cimento 9, 491 (1958) and 14, 951 (1959).MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    P.C. Sabatier, J. Math. Phys. 7, 1515 and 2079 (1966); 8, 905 (1927) and 9, 1241 (1968).MathSciNetCrossRefGoogle Scholar
  19. [19]
    P.C. Sabatier and F. Quyen Van Phu, Phys. Rev. D 4, 127 (1971).Google Scholar
  20. [20]
    W.R. Theis, Z. Naturforschung 11a, 889 (1956).Google Scholar

Copyright information

© Birkhäuser Boston 1983

Authors and Affiliations

  • H. Fiedeldey
  • R. Lipperheide
  • S. Sofianos

There are no affiliations available

Personalised recommendations