Advertisement

Chemical Carcinogenesis

  • D. H. Phillips

Abstract

It is apparent from studies of the incidence of cancer in different parts of the world that some striking regional differences exist. For most human cancers there is a lack of evidence to implicate known carcinogenic viruses as the critical factors responsible [the exceptions are the associations between hepatitis-B virus infection and liver cancer, herpesviruses and cervical cancer and Burkitt’s lymphoma, and HTLV and T-cell lymphoma (see Chapter 4)]. Nor do genetic factors appear to play a major role in these geographical differences; studies on migrants reveal that, within two generations, i.e. once they have absorbed the habits and culture of their adopted nation, the migrants experience cancer incidences similar to those of the indigenous populations. Therefore the concept has emerged that the majority of human cancers is caused by environmental factors. Studies on chemical carcinogenesis originated from observations of unusually high incidences of cancers among workers in certain industrial occupations and from subsequent laboratory studies in which tumours were induced in animals by the same chemical mixtures to which the ‘at-risk’ groups of workers were exposed.

Keywords

Polycyclic Aromatic Hydrocarbon Mouse Skin Chemical Carcinogen Xeroderma Pigmentosum Carcinogenic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Agency for Research on Cancer (1982) IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Suppl. 4, IARC, LyonGoogle Scholar
  2. 2.
    Redmond, D.E., Jr (1970) Tobacco and cancer: the first clinical report, 1761. N. Eng. J. Med., 282, 18–23CrossRefGoogle Scholar
  3. 3.
    von Soemmering, S.T. (1795) De morbis vasorum abserventium corporis humani. Main, Frankfurt, p. 109Google Scholar
  4. 4.
    Pott, P. (1775) Chirurgical Observations Relative to the Cancer of the Scrotum, London, 1775. Reprinted in Natl. Cancer Inst. Monogr., 10, 7–13 (1963)Google Scholar
  5. 5.
    von Volkmann, R. (1875) Beiträge zur Chirurgie, LeipzigGoogle Scholar
  6. 6.
    Bell, J. (1876) Edinb. Med. J., 22, 135.Google Scholar
  7. 7.
    Henry, S.A. (1947) Occupational cutaneous cancer attributable to certain chemicals in industry. Br. Med. Bull., 4, 389–401Google Scholar
  8. 8.
    Rehn, L. (1895) Blasergeschwülste bei Fuchsin-Arbeitern. Arch. Klin. Chir., 50, 588–600Google Scholar
  9. 9.
    Yamagiwa, K. & Ichikawa, K. (1915) Verh. Jpn. Path. Ges., 5, 142–48. See also Experimental study of the pathogenesis of carcinoma. J. Cancer Res., 3, 1–29 (1918)Google Scholar
  10. 10.
    Tsutsui, H. (1818) Gann 12, 17Google Scholar
  11. 11.
    Kennaway, E.L. & Hieger, I. (1930) Carcinogenic substances and their fluorescence spectra. Br. Med. J., ii, 1044–6CrossRefGoogle Scholar
  12. 12.
    Cook, J.W., Hewett, C.L. & Hieger, I. (1933) The isolation of a cancer-producing hydrocarbon from coal tar. J. Chem. Soc., 395–405Google Scholar
  13. 13.
    Yoshida, T. (1933) Uber die serienweise Verfolgung der Veränderungen der leber bei der experimentellen Hepatomerzeugung durch o-Amidoazotoluol. Trans. Jpn. Path. Soc., 23, 636–8Google Scholar
  14. 14.
    Hueper, W.C., Wiley, F.H. & Wolfe, H.D. (1938) Experimental production of bladder tumors in dogs by administration of beta-naphthylamine. J. Ind. Hyg. Toxicol., 20, 46–84Google Scholar
  15. 15.
    Miller, J.A. & Miller, E.C. (1969) Metabolic activation of carcinogenic aromatic amines and amides via N-hydroxylation and N-hydroxy esterification and its relationship to ultimate carcinogens as electrophilic reactants. In E. Bergmann & E. Pullman (eds) The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol. 1, Physiochemical Mechanisms of Carcinogenesis, The Israel Academy of Sciences and Humanities, Jerusalem, pp. 237–61Google Scholar
  16. 16.
    Miller, J.A. (1970) Carcinogenesis by chemicals: an overview — G.H.A. Clowes memorial lecture. Cancer Res., 30, 559–76Google Scholar
  17. 17.
    Ames, B.N., Durston, W.E., Yamasaki, E. & Lee, F.D. (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. USA, 70, 2281–5CrossRefGoogle Scholar
  18. 18.
    Brookes, P. & Lawley, P.D. (1964) Evidence for the binding of polynuclear aromatic hydrocarbons to the nucleic acids of mouse skin: relation between carcinogenic power of hydrocarbons and their binding to DNA. Nature (Lond.), 202, 781–4CrossRefGoogle Scholar
  19. 19.
    Williams, R.T. (1959) Detoxication Mechanisms, 2nd edn, Chapman and Hall, LondonGoogle Scholar
  20. 20.
    Holtzman, J.L., Gillette, J.R. & Milne, G.W.A. (1967) The incorporation of 18O into naphthalene in the enzymatic formation of 1,2-dihydronaphthalene-1,2-diol. J. Biol. Chem., 242, 4386–7Google Scholar
  21. 21.
    Conney, A.H. (1982) Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G.H.A. Clowes memorial lecture. Cancer Res., 4875–917Google Scholar
  22. 22.
    Phillips, D.H. (1983) Fifty years of benzo[a]pyrene. Nature (Lond.), 303, 468–72CrossRefGoogle Scholar
  23. 23.
    Dipple, A. (1976) Polynuclear aromatic carcinogens. In C.E. Searle (ed.) Chemical Carcinogens, ACS Monograph 173, American Chemical Society, Washington, DC, pp. 245–314Google Scholar
  24. 24.
    Sims, P. & Grover, P.L. (1974) Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis. Adv. Cancer Res., 20, 165–274CrossRefGoogle Scholar
  25. 25.
    Borgen, A., Darvey, H., Castagnoli, B., Crocker, T.T., Rasmussen, R.E. & Wang, I.Y. (1973) Metabolic conversion of benzo[a]pyrene by Syrian hamster liver microsomes and binding of metabolites to DNA. J. Med. Chem., 16, 502–6CrossRefGoogle Scholar
  26. 26.
    Sims, P., Grover, P.L., Swaisland, A., Pal, K. & Hewer, A. (1974) Metabolic activation of benzo[a]pyrene proceeds by a diol-epoxide. Nature (Lond.), 252, 326–8CrossRefGoogle Scholar
  27. 27.
    Jerina, D.M., Lehr, R.E., Yagi, H., Hernandez, O., Dansette, P.M., Wislocki, P.G., Wood, A.W., Chang, R.L., Levin, W. & Conney, A.H. (1976) Mutagenicity of benzo[a]pyrene derivatives and the description of a quantum mechanical model which predicts the ease of carbonium ion formation from diol epoxides. In F.J. de Serres, J.R. Fouts, J.R. Bend & R.M. Philpot (eds) In vitro Metabolic Activation in Mutagenesis Testing, Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 159–78Google Scholar
  28. 28.
    Sims, P. & Grover, P.L. (1981) Involvement of dihydrodiols and diol epoxides in the metabolic activation of polycyclic hydrocarbons other than benzo[a]pyrene. In H.V. Gelboin & P.O.P. Ts’o (eds) Polycyclic Hydrocarbons and Cancer, vol. 3, Academic Press, New York, pp. 117–81Google Scholar
  29. 29.
    Magee, P.N. & Barnes, J.M. (1956) The production of malignant primary hepatic tumours in the rat by feeding dimethylnitrosamine. Br. J. Cancer, 10, 113–22CrossRefGoogle Scholar
  30. 30.
    Magee, P.N., Montesano, R. & Preussman, R. (1976) N-Nitroso compounds and related carcinogens. In C.E. Searle (ed.) Chemical Carcinogens, ACS Monograph 173, American Chemical Society, Washington, DC, pp. 491–625Google Scholar
  31. 31.
    Magee, P.N. (ed.) (1982) Nitrosamines and Human Cancer, Banbury Report No. 12, Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  32. 32.
    Mirvish, S.S. (1977) N-Nitroso compounds: their chemical and in vivo formation and possible importance as environmental carcinogens. J. Toxicol. Environ. Health, 2, 1267–77CrossRefGoogle Scholar
  33. 33.
    Druckrey, H. (1973) Specific carcinogenic and teratogenic effects of ‘indirect’ alkylating methyl and ethyl compounds, and their dependency on stages of ontogenic developments. Xenobiotica, 3, 271–303CrossRefGoogle Scholar
  34. 34.
    Reddy, B.S., Cohen, L.A., McCoy, G.D., Hill, P., Weisburger, J.H. & Wynder, E.L. (1980) Nutrition and its relationship to cancer. Adv. Cancer Res., 32, 237–345CrossRefGoogle Scholar
  35. 35.
    Weisburger, J.H. & Williams, G.M. (1982) Metabolism of chemical carcinogens. In F.F. Becker (ed.) Cancer: a comprehensive Treatise, vol. 1, Etiology: Chemical and Physical Carcinogenesis, 2nd edn, Plenum Press, New York, pp. 241–333Google Scholar
  36. 36.
    Clayson, D.B. & Garner, R.C. (1976) Carcinogenic aromatic amines and related compounds. In C.E. Searle (ed.) Chemical Carcinogens, ACS Monograph 173, American Chemical Society, Washington, DC, pp. 366–461Google Scholar
  37. 37.
    Miller, E.C., Miller, J.A. & Enomoto, E. (1964) The comparative carcinogenicities of 2-acetylaminofluorene and its N-hydroxy metabolite in mice, hamsters, and guinea pigs. Cancer Res., 24, 2018–26Google Scholar
  38. 38.
    Hlavica, P. & Hülsmann, S. (1979) Studies on the mechanism of hepatic microsomal N-oxide formation: N-oxidation of N,N-dimethylaniline by a reconstituted rabbit liver microsomal cytochrome P-448 enzyme system. Biochem. J., 182, 109–16Google Scholar
  39. 39.
    Kadlubar, F.F., Miller, J.A. & Miller, E.C. (1976) Microsomal N-oxidation of the hepatocarcinogen N-methyl-4-aminoazobenzene and the reactivity of N-hydroxy-N-methyl-4-aminoazobenzene. Cancer Res., 36, 1196–1206Google Scholar
  40. 40.
    Kadlubar, F.F., Miller, J.A. & Miller, E.C. (1976) Hepatic metabolism of N-hydroxy-N-methyl-4-aminoazobenzene and other N-hydroxy arylamines to reactive sulfuric acid esters. Cancer Res., 36, 2350–9Google Scholar
  41. 41.
    Yahagi, T., Degawa, M., Seino, Y., Matsushima, T., Nagao, M., Sugimura, T. & Hashimoto, Y. (1975) Mutagenicity of carcinogenic azo dyes and their derivatives. Cancer Lett., 1, 91–6CrossRefGoogle Scholar
  42. 42.
    DeBaun, J.R., Smith, J.Y.R., Miller, E.C. & Miller, J.A. (1970) Reactivity in vivo of the carcinogen N-hydroxy-2-acetylaminofluorene: increase by sulfate ion. Science, 167, 184–6CrossRefGoogle Scholar
  43. 43.
    Weisburger, J.H., Yamamoto, R.S., Williams, G.M., Grantham, P.H., Matsushima, T. & Weisburger, E.K. (1972) On the sulfate ester of N-hydroxy-N-2-fluorenylacetamide as a key ultimate hepatocarcinogen in the rat. Cancer Res., 32, 491–500Google Scholar
  44. 44.
    Kriek, E. & Westra, J.G. (1979) Metabolic activation of aromatic amines and amides and interactions with nucleic acids. In P.L. Grover (ed.) Chemical Carcinogens and DNA, vol. 2, CRC Press, Boca Raton, FL, pp. 1–28Google Scholar
  45. 45.
    Lai, C.-C, Miller, E.C., Miller, J.A. & Liem, A. (1984) Strong evidence that N-sulfoöxy-2-aminofluorene is the major ultimate carcinogenic metabolite of N-hydroxy-2-acetylaminofluorene (N-HO-AAF) in infant male mice. Proc. Am. Assoc. Cancer Res., 25, 85Google Scholar
  46. 45a.
    Yamamoto, R.S., Williams, G.M., Richardson, H.L., Weisburger, E.K. and Weisburger, J.H. (1973). Effect of p-hydroxyacetanilide on liver cancer induction by N-hydroxy-N-2-fluorenylacetamide. Cancer Res., 33, 454–7.Google Scholar
  47. 46.
    Sugimura, T. (ed.) The Nitroquinolines. Carcinogenesis: a Comprehensive Survey vol. 6, Raven Press, New YorkGoogle Scholar
  48. 47.
    Kadlubar, F.F., Miller, J.A. & Miller, E.C. (1977) Hepatic microsomal N-glucuronidation and nucleic acid binding of N-hydroxy arylamines in relation to urinary bladder carcinogenesis. Cancer Res., 37, 805–14Google Scholar
  49. 48.
    Bryan, G.T. (ed.) (1978) Nitrofurans. (Carcinogenesis: a Comprehensive Survey) vol. 4, Raven Press, New YorkGoogle Scholar
  50. 49.
    Lawley, P.D. (1976) Carcinogenesis by alkylating agents. In C.E. Searle (ed.) Chemical Carcinogens, ACS Monograph 173, American Chemical Society, Washington, DC, pp. 83–244Google Scholar
  51. 50.
    Schoental, R. (1976) Carcinogens in plants and microorganisms. In C.E. Searle (ed.) Chemical Carcinogens, ACS Monograph 173, American Chemical Society, Washington, DC, pp. 626–89Google Scholar
  52. 51.
    Wogan, G.N. (1973) Aflatoxin carcinogenesis. Methods Cancer Res., 7, 309–44Google Scholar
  53. 52.
    Peers, F.G. & Linsell, C.A. (1973) Dietary aflatoxins and liver cancer — a population based study in Kenya. Br. J. Cancer, 27, 473–84CrossRefGoogle Scholar
  54. 53.
    Peers, F.G., Gilman, G.A. & Linsell, C.A. (1976) Dietary anatoxins and human liver cancer. A study in Swaiziland. Int. J. Cancer, 17, 167–76CrossRefGoogle Scholar
  55. 54.
    Swenson, D.H., Lin, J.-K., Miller, E.C. & Miller, J.A. (1977) Aflatoxin B1–2,3-oxide as a probable intermediate in the covalent binding of anatoxins B1 and B2 to rat liver DNA and ribosomal RNA in vivo. Cancer Res., 37, 172–81Google Scholar
  56. 55.
    Lin, J.-K., Miller, J.A. & Miller, E.C. (1977) 2,3-Dihydro-2-(guan-7-yl-3-hydroxy-aflatoxin B1, a major acid hydrolysis product of aflatoxin B1-DNA or -rRNA adducts formed in hepatic microsome-mediated reactions and in rat liver in vivo. Cancer Res., 37, 4430–8Google Scholar
  57. 56.
    Essigmann, J.M., Croy, R.G., Nadzan, A.M., Busby, W.F., Jr, Reinhold, V.N., Büchi, G. & Wogan, G.N. (1977) Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro. Proc. Natl. Acad. Sci. USA, 74, 1870–4CrossRefGoogle Scholar
  58. 57.
    Miller, E.C., Swanson, A.B., Phillips, D.H., Fletcher, T.L., Liem, A. & Miller, J.A. (1983) Structure-activity studies of the carcinogenicities in the mouse and rat of some naturally occurring and synthetic alkenylbenzene derivatives related to safrole and estragole. Cancer Res., 43, 1124–34Google Scholar
  59. 58.
    Borchert, P., Miller, J.A., Miller, E.C. & Shires, T.K. (1973) 1′-Hydroxysafrole, a proximate carcinogenic metabolite of safrole in the rat and mouse. Cancer Res., 33, 590–600Google Scholar
  60. 59.
    Drinkwater, N.R., Miller, E.C., Miller, J.A. & Pitot, U.C. (1976) Hepatocarcino-genicity of estragole (l-allyl-4-methoxybenzene) and 1′-hydroxyestragole in the mouse and mutagenicity of 1′-acetoxyestragole in bacteria. J. Natl. Cancer Inst., 57, 1323–31Google Scholar
  61. 60.
    Phillips, D.H., Miller, J.A., Miller, E.C. & Adams, B. (1981) N 2 Atom of guanine and N 6 atom of adenine residues as sites for covalent binding of metabolically activated 1′-hydroxysafrole to mouse liver DNA in vivo. Cancer Res., 41, 2664–71Google Scholar
  62. 61.
    Phillips, D.H., Miller, J.A., Miller, E.C. & Adams, B. (1981) Structures of the DNA adducts formed in mouse liver after administration of the proximate hepatocarcinogen 1′-hydroxyestragole. Cancer Res., 41, 176–86Google Scholar
  63. 62.
    Boberg, E.W., Miller, E.C., Miller, J.A., Poland, A. & Liem, A. (1983) Strong evidence from studies with brachymorphic mice and pentachlorophenol that 1′-sulfoöxysafrole is the major ultimate electrophilic and carcinogenic metabolite of 1′-hydroxysafrole in mouse liver. Cancer Res., 43, 5163–73Google Scholar
  64. 63.
    Laqueur, G.L. (1970) Contribution of intestinal macroflora and microflora to carcinogenesis. In J.W. Burdette (ed.) Carcinoma of the Colon and Antecedent Epithelium, Thomas, Springfield, II, pp. 305–13Google Scholar
  65. 64.
    Matsumoto, H., Nagata, Y., Nishimura, E.T., Bristol, R. & Haber, M. (1972) β-Glucosidase modulation in preweanling rats and its association with tumor induction by cycasin. J. Natl. Cancer Inst., 49, 423–34Google Scholar
  66. 65.
    Jago, M.V., Edgar, J.A., Smith, L.W. & Culvenor, C.C.J. (1970) Metabolic conversion of heliotridine-based pyrrolizidine alkaloids to dehydroheliotridine. Mol. Pharmacol., 6, 402–6Google Scholar
  67. 66.
    Mattocks, A.R. & White, I.N.H. (1973) Toxic effects and pyrrolic metabolites in the liver of young rats given the pyrrolizidine alkaloid retrorsine. Chem.-Biol. Interactions, 6, 297–306CrossRefGoogle Scholar
  68. 67.
    Sirover, M.A. & Loeb, L.A. (1976) Infidelity of DNA synthesis in vitro: screening for potential metal mutagens or carcinogens. Science, 194, 1434–6CrossRefGoogle Scholar
  69. 68.
    Brand, K.G. (1982) Cancer associated with asbestosis, schistosomiasis, foreign bodies, and scars. In F.F. Becker (ed.) Cancer: a Comprehensive Treatise, vol. 1, Etiology: Chemical and Physical Carcinogenesis, 2nd edn, Plenum Press, New York, pp. 661–92Google Scholar
  70. 69.
    Leopold, W.R., Miller, E.C & Miller, J.A. (1979) Carcinogenicity of antitumor cis-platinum (II) coordination complexes in the mouse and rat. Cancer Res., 39, 913–18Google Scholar
  71. 70.
    Baird, W.M. (1979) The use of radioactive carcinogens to detect DNA modifications. In P.L. Grover (ed.) Chemical Carcinogens and DNA, vol. 1, CRC Press, Boca Raton, FL, pp. 59–83Google Scholar
  72. 71.
    Vigny, P. & Duquesne, M. (1979) Fluorimetric detection of DNA-carcinogen complexes. In P.L. Grover (ed.) Chemical Carcinogens and DNA, vol. 1, CRC Press, Boca Raton, FL, pp. 85–110Google Scholar
  73. 72.
    Müller, R. & Rajewsky, M.F. (1980) Immunological quantification by high-affinity antibodies of O 6-ethyldeoxyguanosine in DNA exposed to N-ethyl-N-nitrosourea. Cancer Res., 40, 887–96Google Scholar
  74. 73.
    Poirier, M.C., Santella, R., Weinstein, I.B., Grunberger, D. & Yuspa, S.H. (1980) Quantitation of benzo[a]pyrene-deoxyguanosine adducts by radioimmunoassay. Cancer Res., 40, 412–16Google Scholar
  75. 74.
    Haugen, A., Groopman, J.D., Hsu, I.C., Goodrich, G.R. Wogan, G.N. & Harris, C.C. (1981) Monoclonal antibody to anatoxin B1 modified DNA detected by enzyme immunoassay. Proc. Natl. Acad. Sci. USA, 78, 4124–7CrossRefGoogle Scholar
  76. 75.
    Gupta, R.C., Reddy, M.V. & Randerath, K. (1982) 32P-Postlabeling analysis of nonradioactive aromatic carcinogen-DNA adducts. Carcinogenesis, 3, 1081–92CrossRefGoogle Scholar
  77. 76.
    Reddy, M.V., Gupta, R.C., Randerath, E. & Randerath, K. (1984) 32P-Postlabeling test for covalent DNA binding of chemicals in vivo: application to a variety of aromatic carcinogens and methylating agents. Carcinogenesis, 5, 231–43CrossRefGoogle Scholar
  78. 77.
    Friedberg, E.C. & Hanawalt, P.C. (eds) (1981) DNA Repair. A Laboratory Manual of Research Procedures, vol. 1, parts A and B, Marcel Dekker, New YorkGoogle Scholar
  79. 78.
    Kohn, K.W. (1979) DNA as a target in cancer chemotherapy: measurement of macromolecular DNA damage produced in mammalian cells by anti-cancer agents and carcinogens. Methods Cancer Res., 16, 291–345Google Scholar
  80. 79.
    Lawley, P.D. (1979) Approaches to chemical dosimetry in mutagenesis and carcinogenesis: the relevance of reactions of chemical mutagens and carcinogens with DNA. In P.L. Grover (ed.) Chemical Carcinogens and DNA, vol. 1, CRC Press, Boca Raton, FL, pp. 1–36Google Scholar
  81. 80.
    Cooper, C.S., Grover, P.L. & Sims, P. (1983) The metabolism and activation of benzo[a]pyrene. Prog. Drug. Metab., 7, 295–396Google Scholar
  82. 81.
    Visser, A. & Westra, J.G. (1981) Partial persistency of 2-aminofluorene and N-acetyl-2-aminofluorene in rat liver DNA. Carcinogenesis, 2, 737–40CrossRefGoogle Scholar
  83. 82.
    Lin, J.-K., Schmall, B., Sharpe, I.D., Miura, I., Miller, J.A. & Miller, E.C. (1975) N-Substitution of carbon 8 in guanosine and deoxyguanosine by the carcinogen N-benzoyloxy-N-methyl-4-aminoazobenzene in vitro. Cancer Res., 35, 832–43Google Scholar
  84. 83.
    Beland, F.A., Tullis, D.L., Kadlubar, F.F., Straub, K.M. & Evans, F.E. (1980) Characterisation of DNA adducts of the carcinogen N-methyl-4-aminoazobenzene in vitro and in vivo. Chem.-Biol. Interactions, 31, 1–17CrossRefGoogle Scholar
  85. 84.
    Tarpley, W.G., Miller, J.A. & Miller, E.C. (1982) Rapid release of carcinogen-guanine adducts from DNA after reaction with N-acetoxy-2-acetylaminofluorene or N-benzoyloxy-N-methyl-4-aminoazobenzene. Carcinogenesis, 3, 81–8CrossRefGoogle Scholar
  86. 85.
    Lawley, P.D. & Warren, W. (1976) Removal of minor methylation products 7-methyladenine and 3-methylguanine from DNA of Escherichia coli treated with dimethyl sulphate. Chem.-Biol. Interactions, 12, 211–20CrossRefGoogle Scholar
  87. 86.
    Bennett, R.A., Essigmann, J.M. & Wogan, G.N. (1981) Excretion of an aflatoxin-guanine adduct in the urine of aflatoxin B1-treated rats. Cancer Res., 41 650–4Google Scholar
  88. 87.
    Phillips, D.H. & Hanawalt, P.C. (1982) Alkali-sensitive sites in DNA from human cells treated with ultraviolet light, 1′-acetoxysafrole or 1′-acetoxyestragole. Carcinogenesis, 3, 935–40CrossRefGoogle Scholar
  89. 88.
    Drinkwater, N.R., Miller, E.C. & Miller, J.A. (1980) Estimation of apurinic/apyrimidinic sites and phosphotriesters in deoxyribonucleic acid treated with electrophilic carcinogens and mutagens. Biochemistry, 19, 5087–92CrossRefGoogle Scholar
  90. 89.
    Kadlubar, F.F., Anson, J.F., Dooley, K.L. & Beland, F.F. (1981) Formation of urothelial and hepatic DNA adducts from the carcinogen 2-naphthylamine. Carcinogenesis, 2, 467–70CrossRefGoogle Scholar
  91. 90.
    Kadlubar, F.F., Miller, J.A. & Miller, E.C. (1978) Guanyl O 6-arylamination and O 6-arylation of DNA by the carcinogen N-hydroxy-1-naphthylamine. Cancer Res., 38, 3628–38Google Scholar
  92. 91.
    Geacintov, N.E., Gagliano, A., Ivanovic, V. & Weinstein, LB. (1978) Electric linear dichroism study on the orientation of benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide covalently bound to DNA. Biochemistry, 17, 5256–62CrossRefGoogle Scholar
  93. 92.
    Beland, F.A. (1978) Computer-generated graphic models of the N-substituted deoxyguanosine adducts of 2-acetylaminofluorene and benzo[a]pyrene and the O 6 -substituted deoxyguanosine adduct of 1-naphthylamine in the DNA double helix. Chem.-Biol. Interactions, 22, 329–39CrossRefGoogle Scholar
  94. 93.
    Santella, R.M. & Grunberger, D. (1983) Induction of the base displacement or Z conformation in DNA by N-2-acetylaminofluorene modification. Environ. Health Perspect., 49, 107–15CrossRefGoogle Scholar
  95. 94.
    Westra, J.G., Kriek, E. & Hittenhausen, H. (1976) Identification of the persistently bound form of the carcinogen N-acetyl-2-aminofluorene to rat liver DNA in vivo. Chem.-Biol. Interactions, 15, 149–64CrossRefGoogle Scholar
  96. 95.
    Grunberger, D. & Weinstein, I.B. (1979) Conformational changes in nucleic acids modified by chemical carcinogens. In P.L. Grover (ed.) Chemical Carcinogens and DNA, vol. 2, CRC Press, Boca Raton, FL, pp. 59–93Google Scholar
  97. 96.
    Eisenstadt, E., Warren, A.J., Porter, J., Atkins, D. & Miller, J.H. (1982) Carcinogenic epoxides of benzo[a]pyrene and cyclopenta[cd]pyrene induce base substitutions via specific transversions. Proc. Natl. Acad. Sci. USA, 79, 1945–1949CrossRefGoogle Scholar
  98. 97.
    Foster, P.L., Eisenstadt, E. & Miller, J.H. (1983) Base substitution mutations induced by metabolically activated aflatoxin B1. Proc. Natl. Acad. Sci. USA, 80, 2695–8CrossRefGoogle Scholar
  99. 98.
    Rajewsky, M.F., Augenlicht, L.H., Biessmann, H., Goth, R., Hülser, D.F., Laerum, O.D. & Lomakina, L. Ya. (1977) Nervous system-specific carcinogenesis by ethylnitrosourea in the rat: molecular and cellular aspects. In H.H. Hiatt, J.D. Watson & J. A. Winsten (eds) Origins of Human Cancer, Cold Spring Harbor Laboratory, New York, pp. 709–26Google Scholar
  100. 99.
    Swenberg, J.A., Dyroff, M.C., Bedell, M.A., Popp, J.A., Huh, N., Kirstein, U. & Rajewsky, M.F. (1984) O 4-Ethyldeoxythymidine, but not O 6-ethyldeoxyguanosine, accumulates in hepatocyte DNA of rats exposed continuously to diethylnitrosamine Proc. Natl. Acad. Sci. USA, 81, 1692–5CrossRefGoogle Scholar
  101. 100.
    Allen, J.A. & Coombs, M.M. (1980) Covalent binding of polycyclic aromatic compounds to mitochondrial and nuclear DNA. Nature (Lond.), 287, 244–5CrossRefGoogle Scholar
  102. 101.
    Backer, J. & Weinstein, LB. (1980) Mitochondrial DNA is a major cellular target for a dihydrodiol-epoxide derivative of benzo[a]pyrene. Science, 209, 297–9CrossRefGoogle Scholar
  103. 102.
    Hanawalt, P.C., Cooper, P.K., Ganesan, A.K. & Smith, C.A. (1979) DNA repair in bacteria and mammalian cells. Ann. Rev. Biochem., 48, 783–836CrossRefGoogle Scholar
  104. 103.
    Cleaver, J.E. (1968) Defective repair replication of DNA in Xeroderma pigmentosum. Nature (Lond.), 218, 652–6CrossRefGoogle Scholar
  105. 104.
    Bootsma, D. (1978) Xeroderma pigmentosum. In P.C. Hanawalt, E.C. Friedberg & C.F. Fox (eds) DNA Repair Mechanisms, Academic Press, New York, pp. 589–601Google Scholar
  106. 105.
    Paterson, M.C. (1978) Ataxia telangiectasia: a model inherited disease linking deficient DNA repair with radiosensitivity and cancer proneness. In P.C. Hanawalt, E.C. Friedberg, & C.F. Fox (eds) DNA Repair Mechanisms, Academic Press, New York, pp. 637–50Google Scholar
  107. 106.
    German, J. (1978) DNA repair defects and human disease. In P.C. Hanawalt, E.C Friedberg & C.F. Fox (eds) DNA Repair Mechanisms, Academic Press, New York, pp. 625–31Google Scholar
  108. 107.
    Fujiwara, Y., Tatsumi, M. & Sasaki, M.S. (1977) Cross-link repair in human cells and its possible defect in Franconi’s anemia cells. J. Mol. Biol., 113, 635–49CrossRefGoogle Scholar
  109. 108.
    Rajalakshmi, S., Rao, P.M. & Sarma, D.S.R. (1982) Chemical carcinogenesis: interactions of carcinogens with nucleic acids. In F.F. Becker (ed.) Cancer: a Comprehensive Treatise, vol. 1, Etiology: Chemical and Physical Carcinogenesis, 2nd edn, Plenum Press, New York, pp. 335–409Google Scholar
  110. 109.
    Sutherland, B.M. (1978) Photoreactivation in mammalian cells. Int. Rev. Cytol., 8, (Suppl.) 301–34CrossRefGoogle Scholar
  111. 110.
    Pegg, A.E. (1978) Enzymatic removal of O 6-methylguanine from DNA by mammalian cell extracts. Biochem. Biophys. Res. Commun., 84, 166–73CrossRefGoogle Scholar
  112. 111.
    Pegg, A.E., Roberfroid, M., von Bahr, C., Foote, R.S., Mitra, S., Bresil, H., Likhachev, A. & Montesano, R. (1982) Removal of O 6-methylguanine from DNA by human liver fractions. Proc. Natl. Acad. Sci. USA, 79, 5162–5CrossRefGoogle Scholar
  113. 112.
    Lehmann, A.R., Kirk-Bell, S., Arlett, C.F., Paterson, M.C., Lohman, P.H.M., de Weerd-Kastelein, E.A. & Bootma, D. (1975) Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc. Natl. Acad. Sci. USA, 72, 219–23CrossRefGoogle Scholar
  114. 113.
    Radman, M. (1975) SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci., 5A, 355–67Google Scholar
  115. 114.
    Deelman, H.T. (1924) Die Entstehung des experimentellen, Teerkresbses und die Bedeutung der Zellenregeration. Z. Krebsforsch., 21, 220CrossRefGoogle Scholar
  116. 115.
    Berenblum, I. (1941) The cocarcinogenic action of croton resin. Cancer Res., 1, 44–8Google Scholar
  117. 116.
    Hecker, E. (1968) Cocarcinogenic principles from the seed oil of Croton tiglium and from other Euphorbiaceae. Cancer Res., 28, 2338–49Google Scholar
  118. 117.
    Van Duuren, B.L. (1969) Tumour-promoting agents in two-stage carcinogenesis. Prog. Exp. Tumor Res., 11, 31–68Google Scholar
  119. 118.
    Fujiki, H., Mori, M., Nakayasu, M., Terada, M., Sugimura, T. & Moore, R. (1981) Indole alkaloids: dihydroteleocidin B, teleocidin, and lyngbyatoxin A as members of a new class of tumor promoters. Proc. Natl. Acad. Sci. USA, 78, 3872–6CrossRefGoogle Scholar
  120. 119.
    Berenblum, I. (1982) Sequential aspects of chemical carcinogenesis: skin. In F.F. Becker (ed.) Cancer: a Comprehensive Treatise, vol. 1, Etiology: Chemical and Physical Carcinogenesis, 2nd edn, Plenum Press, New York, pp. 451–84Google Scholar
  121. 120.
    Boutwell, R.K. (1974) The function and mechanism of promoters of carcinogenesis. CRC Crit. Rev. Toxicol., 2, 419–43CrossRefGoogle Scholar
  122. 121.
    Hennings, H., Shores, R., Wenk, M.L., Spangler, E.F., Tarone, R. & Yuspa, S.H. (1983) Malignant conversion of mouse skin tumours is increased by tumour initiators and unaffected by tumour promoters. Nature (Lond.), 304, 67–9CrossRefGoogle Scholar
  123. 122.
    Pound, A.W. & Bell, J.R. (1962) The influence of croton oil stimulation on tumour initiation by urethane in mice. Br. J. Cancer, 16, 690–5CrossRefGoogle Scholar
  124. 123.
    Boutwell, R.K. (1964) Some biological aspects of skin carcinogenesis. Prog. Exp. Tumor Res., 4, 207–50Google Scholar
  125. 124.
    Peraino, C., Fry, R.J.M. & Staffeldt, E. (1971) Reduction and enhancement by phenobarbital of hepatocarcinogenesis induced in the rat by 2-acetylaminofluorene. Cancer Res., 31, 1506–12Google Scholar
  126. 125.
    Hicks, R.M., Wakefield, J. St J. & Chowaniec, J. (1975) Evaluation of a new model to detect bladder carcinogens or cocarcinogens. Chem.-Biol. Interactions, 11, 225–33CrossRefGoogle Scholar
  127. 126.
    Slaga, T.J., Sivak, A. & Boutwell, R.K. (eds) (1978) Mechanisms of Tumor Promotion and Cocarcinogenesis, vol. 1, Raven Press, New YorkGoogle Scholar
  128. 127.
    Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U. & Nishizuka, Y. (1982) Direct activation of calcium-activated, phospholipid dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem., 257, 7847–51Google Scholar
  129. 128.
    Ashendel, C.L., Staller, J.M. & Boutwell, R.K. (1983) Protein kinase activity associated with a phorbol ester receptor purified from mouse brain. Cancer Res., 43, 4333–7Google Scholar
  130. 129.
    Emerit, I. & Cerutti, P. (1982) The tumor promotor phorbol-12-myristate-13-acetate induces chromosomal aberrations in human lymphocytes via indirect action. In C.C. Harris & P.A. Cerutti (eds) Mechanisms of Chemical Carcinogenesis, Alan R. Liss, New York, pp. 495–7Google Scholar
  131. 130.
    Weinstein, I.B. (1981) Current concepts and controversies in chemical carcinogenesis. J. Supramol. Struct. Cell. Biochem., 17, 99–120CrossRefGoogle Scholar
  132. 131.
    Weinberg, R.A. (1983) A molecular basis of cancer. Sci. Am., 249 (5), 102–216CrossRefGoogle Scholar
  133. 132.
    Tabin, C.J., Bradley, S.M., Bargmann, C.I., Weinberg, R.A., Papageorge, A.G., Scolnick, E.M., Dhar, R., Lowy, D.R. & Chang, E.H. (1982) Mechanism of activation of a human oncogene. Nature (Lond.), 300, 143–9CrossRefGoogle Scholar
  134. 133.
    Reddy, E.P., Reynolds, R.K., Santos, E. & Barbacid, M. (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature (Lond.), 300, 149–52CrossRefGoogle Scholar
  135. 134.
    Yuasa, Y., Srivastava, S.K., Dunn, C.U., Rhim, J.S., Reddy, E.P. & Aaronson, S.A. (1983) Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene. Nature (Lond.), 303, 775–9CrossRefGoogle Scholar
  136. 135.
    Lacassagne, A. (1932) Apparition de cancers de la mamelle chez la souris male, soumise a des injections de folliculine. C.R. Acad. Sci. (Paris), 195, 630–2Google Scholar
  137. 136.
    Pike, M.C., Henderson, B.E., Krailo, M.D., Duke, A. & Roy, S. (1983) Breast cancer in young women and use of oral contraceptives: possible modifying effect of formulation and age at use. Lancet, ii, 926–9CrossRefGoogle Scholar
  138. 137.
    Vessey, M.P., Lawless, M., McPherson, K. & Yeates, D. (1983) Neoplasia of the cervix uteri and contraception — a possible adverse effect of the pill. Lancet, ii, 930–4CrossRefGoogle Scholar
  139. 138.
    Drevon, C., Piccoli, C. & Montesano, R. (1981) Mutagenicity assays of estrogenic hormones in mammalian cells. Mutat. Res., 89, 83–90CrossRefGoogle Scholar
  140. 139.
    Highman, B., Norvell, M.J. & Shellenberger, T.E. (1977) Pathological changes in female C3H mice continuously fed diets containing diethylstilbestrol or 17-beta-estradiol. J. Environ. Pathol. Toxicol., 1, 1–30Google Scholar
  141. 140.
    Barrett, J.C., Wong, A. & McLachlan, J.A. (1981) Diethylstilbestrol induces neoplastic transformation without measurable gene mutation at two loci. Science, 212, 1402–4CrossRefGoogle Scholar
  142. 141.
    Mehta, R.D. & Borstel, R.C. (1982) Genetic activity of diethylstilbestrol in Saccharomyces cerevisiae. Enhancement of mutagenicity by oxidizing agents. Mutation Res., 92, 49–61Google Scholar
  143. 142.
    Tsutsui, T., Degen, G.H., Schiffman, D., Wong, A., Maizumi, H., McLachlan, J.A. & Barrait, J.C. (1984) Dependence on exogenous metabolic activation for induction of unscheduled DNA synthesis in Syrian hamster embryo cells by diethylstilbestrol and related compounds. Cancer Res., 44, 184–9Google Scholar
  144. 143.
    Rüdiger, H.W., Haenisch, F., Metzler, M., Oesch, F. & Glatt, H.R. (1979) Metabolites of diethylstilboestrol induce sister chromatid exchange in human cultured fibroblasts. Nature (Lond.), 281, 392–4CrossRefGoogle Scholar
  145. 144.
    Lutz, W.K., Jaggi, W. & Schlatter, C.H. (1982) Covalent binding of diethylstilboestrol to DNA in rat and hamster liver and kidney. Chem.-Biol. Interactions, 42, 251–7CrossRefGoogle Scholar
  146. 145.
    Metzler, M. (1984) Diethylstilboestrol: reactive metabolites derived from a hormonally active compound. In H. Greim, R. Jung, M. Kramer, H. Marquardt & F. Oesch (eds) Biochemical Basis of Chemical Carcinogenesis, Raven Press, New York, pp. 69–75Google Scholar
  147. 146.
    Sinha, D.K. & Dao, T.L. (1980) Induction of mammary tumors in ageing rats by 7,12-dimethylbenz[a]anthracene: role of DNA synthesis during carcinogenesis. J. Natl. Cancer Inst., 64, 519–21Google Scholar
  148. 147.
    Miller, E.C. & Miller, J.A. (1981) Mechanisms of carcinogenesis. Cancer, 47, 1055–64CrossRefGoogle Scholar
  149. 148.
    Wattenberg, L.W. (1978) Inhibition of chemical carcinogenesis. J. Natl. Cancer Inst., 60, 11–18Google Scholar
  150. 149.
    Hill, M.J. (1980) Bacterial metabolism and human carcinogenesis. Br. Med. Bull., 36, 89–94Google Scholar

Further Reading

  1. Becker, F.F. (ed.) (1982) Cancer: a Comprehensive Treatise, vol. 1, Etiology: Chemical and Physical Carcinogenesis, 2nd edn, Plenum Press, New YorkGoogle Scholar
  2. Doll, R. & Peto, R. (1981) The Causes of Cancer, Oxford University Press, LondonGoogle Scholar
  3. Grover, P.L. (ed.) (1979) Chemical Carcinogens and DNA, 2 vols, CRC Press, Boca Raton, FLGoogle Scholar
  4. Hiatt, H.H., Watson, J.D. & Winsten, J.A. (eds) (1977) Origins of Human Cancer, 3 vols, Cold Spring Harbor, New YorkGoogle Scholar
  5. Miller, E.C. (1978) Some current perspectives on chemical carcinogenesis in humans and experimental animals: presidential address. Cancer Res., 38, 1479–96Google Scholar
  6. Miller, E.C. & Miller, J.A. (1979) Milestones in chemical carcinogenesis. Sem. Oncol., 6, 445–60Google Scholar
  7. Searle, C.E. (ed.) (1976) Chemical Carcinogens, ACS Monograph No. 173, American Chemical Society, Washington, DCGoogle Scholar
  8. Singer, B. & Grunberger, D. (1983) Molecular Biology of Mutagens and Carcinogens, Plenum Press, New YorkCrossRefGoogle Scholar

Copyright information

© Peter B. Farmer and John M. Walker 1985

Authors and Affiliations

  • D. H. Phillips

There are no affiliations available

Personalised recommendations