Advertisement

Mid-Infrared Laser Surgery

  • M. L. Wolbarsht
  • D. Shi
Part of the NATO ASI Series book series (NSSB, volume 252)

Abstract

Present CO2 laser instruments for general surgery offer many advantages over conventional methods with scalpels and cauterizers yet there are still many limitations. A particularly critical one is the damage to tissue adjacent to that ablated by the laser energy. Laser energy applied to the tissue immediately produces thermal or mechanical damage to a volume surrounding the impact zone. Part of this is due to scattering, but other mechanisms also act on the tissue. Steam formation, thermal expansion, and acoustic shockwaves, with much of the energy in the ultrasonic region, have an effect termed physical amplification. In a living system, there is also a secondary and delayed amplification of the size of the exposure site. This delayed change, the reaction of the living system to the physical trauma, has been termed biological amplification. Some of the important factors of biological amplification are: cell death and histamine or toxin release, inflammation and edema, immune responses, hemorrhage, muto/carcinogenesis, and interference with respiration and cardiac function. For surgery to be successful, biological amplification must be avoided or, at least, minimized.

Keywords

Short Pulse Thermal Damage Absorption Depth Laser Exposure Thermal Relaxation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Hayes and M. L. Wolbarsht, “A Thermal Model for Retinal Damage Induced by Pulsed Lasers”, Aerospace Med. 39:474–480 (1968)Google Scholar
  2. 2.
    J. R. Hayes and M. L. Wolbarsht, “Models in Pathology-Mechanisms of Action of Laser Energy With Biological Tissues”, pp. 255–274, In: M. L. Wolbarsht (ed.), “Laser Applications in Medicine and Biology”, vol. 1. Plenum Press, New York (1971)Google Scholar
  3. 3.
    M. L. Wolbarsht, “Laser Surgery: CO or HF”, IEEE J. Quant. Electron. QE-20, 1427–1432 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas; S. Strikwerda, J. R. Kramer and M. S. Feld, “A Model for Thermal Ablation of Biological Tissue Using Laser Radiation”, Laser Surg. Med. (1987)Google Scholar
  5. 5.
    A. J. Welch, “The Thermal Response of Laser Irradiated Tissue”, IEEE J. Quant. Electron., QE-20, 1471–1481 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    R. Srinivasan and V. Mayno-Banton, “Self Developing Photoetching of Poly (Ethene Terephthalate) Films by Far Ultraviolet Laser Radiation”, Appl. Phys. Lett., 41:576–578 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    R. Srinivasan, “Ablation of Polymers and Biological Tissue by Ultraviolet Lasers”, Science, 234:559–564 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    R. J. Lane, R. Linsker, J. J. Wynne, A. Torres and R. G. Geronemus, “Ultraviolet-Laser Ablation of Skin and Other Tissue”, Conference on Lasers and Electro-Optics, IEEE/OSA CLEO, Baltimore, MD. (1984)Google Scholar
  9. 9.
    S. L. Trokel, R. Srinivasan and B. A. Bodil Brare, “Excimer Laser Surgery of the Cornea”, Amer. J. Ophthalmol., 96:710–715 (1983)Google Scholar
  10. 10.
    W. S. Grundfest, I. F. Litvack, L. Morgenstern, J. S. Forrester, I. S. McDermid, J. Pacala, D. M. Rider and J. B. Laundenslager, “The Effect of Excimer Laser Irradiation on Human Atherosclerotic Aorta: Amelioration of Laser Induced Thermal Damage”, Conference on Lasers and Electro-Optics, IEEE/OSA CLEO, Baltimore, MD (1984)Google Scholar
  11. 11.
    L. Esterowitz and C. Hoffman, “Laser-Tissue/Water Interaction of the Erbium 2.9 urn Laser, pp. 196-197”,.Ln “Lasers in Medicine”, Soc. Photo. Instru. Engineer. (SPIE), 112 (1986)Google Scholar
  12. 12.
    J. G. Bayly, V. B. Kartha and W. H. Stevens, “The Absorption Spectra of Liquid Phase H2O, HDO, and D2O from 0.7 µm to 10 µm.”, Infrared Physics, 3:211–223 (1963)ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Bramson, “Infrared Radiation - A Handbook for Applications” (Trans. R. B. Rodman), Plenum Press, New York (1968)Google Scholar
  14. 14.
    M. Centeno, 5th, “The Refractive Index of Liquid Water in the Near Infrared Spectrum”, J. Opt. Soc. Amer. 31:244–247 (1941)ADSCrossRefGoogle Scholar
  15. 15.
    C. W. Robertson and D. Williams, “Lambert Absorption Coefficients of Water in the Infrared”, J. Opt. Soc. Amer., 61:1316–1320 (1971)ADSGoogle Scholar
  16. 16.
    A. V. Lukashev, Personal Communication (1989)Google Scholar
  17. 17.
    O. N. Krokhin, “Generation of High Temperature Vapors and Plasmas by Laser Radiation”, pp. 1371–1407, In.: F. T. Arecchi, and E. D. Schultz-Dubois (eds), “Laser Handbook”, North Holland Publishing Co., Amsterdam (1972)Google Scholar
  18. 18.
    P. Kubelka, “New Contributions to the Optics of Intensity Light Scattering Materials”, J. Opt. Soc. Amer., 38:448–457 (1948)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    T. Hallderson, and J. Langerholc, “Thermodynamic Analysis of Laser Irradiation of Biological Tissue”, Appl. Opt. 17:3948–3958 (1978)ADSCrossRefGoogle Scholar
  20. 20.
    G. B. Benedek, “Theory of Transparency of the Eye”, Appl. Opt., 10:459–473 (1971)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Mimura and C. Ota, “Transmission of C02 Laser Power by Single Crystal CsBr Fibers”, Appl. Phys. Lett., 40:774–775 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Mimura, Y. Okamura and C. Ota, “Single Crystal CsBr Infrared Fibers”, J. Appl. Phys., 53:5491–5497 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper and L. M. Holbrook, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission”, Appl. Phys. Lett., 33:28–29 (1978)ADSCrossRefGoogle Scholar
  24. 24.
    T. J. Bridges, C. K. N. Patel, A. R. Strnad, 0. R. Wood, E. S. Brewer and D. B. Karlin, “Syneresis of Vitreous by Carbon Dioxide Laser Radiation”, Science, 219:1217–1219 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    T. J. Bridges, J. S. Hasiak and A. R. Strnad, “Single Crystal AgBr Infrared Optical Fibers”, Opt. Lett. 5:85–86 (1980)ADSCrossRefGoogle Scholar
  26. E. Garmire, T. McMahon and M. Bass, “Low-Loss Optical Transmission Through Bent Hollow Metal Waveguides”, Appl. Phys. Lett. 31:92–94 (1977)ADSCrossRefGoogle Scholar
  27. 27.
    V. Artjeshenko, Personal Communication (1989)Google Scholar
  28. 28.
    D. C. Tran, “Advances in Mid-Infrared Fibers”, Proc. Tech. Digest, 5th Int. Conf. Integrated Optics and Optical Fiber Communications, 2:1320 (1985)Google Scholar
  29. 29.
    P. W. France, S. F. Carter, M. W. Moore and C. R. Day, “Progress in Fluoride Fibres for Optical Communications”, Br. Telecom. Technol. J., 5(2) (1987)Google Scholar
  30. 30.
    S. Mitachi, T. Miyashita, and T. Kanamori, “Fluoride-Glass-Cladded Optical Fibers for Mid-Infrared Ray Transmission”, Electron. Lett., 17 (1981)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • M. L. Wolbarsht
    • 1
  • D. Shi
    • 1
  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA

Personalised recommendations