Chemical Laser Interactions with Human Tissues

  • G. L. Valderrama
  • R. F. Menefee
  • B. D. Krenek
  • M. J. Berry
Part of the NATO ASI Series book series (NSSB, volume 252)


Controlled chemical laser ablation of human tissues may offer a means to perform precise microsurgical procedures such as laser keratomileusis1 and laser angioplasty. Some of the potential advantages of chemical lasers for these applications have been identified previously. Repeti­tively pulsed (rp) hydrogen fluoride (HF) chemical laser interactions with human corneal and cardiovascular tissues have been studied to understand tissue ablation phenomenology, effects and mechanisms under well character­ized laser irradiation conditions. RP HF chemical laser experiments have been performed at two wavelengths ( λ = 2.78 µm and 2.91 µm) over a radiant exposure/fluence range of 0.05 to 10 J/cm2 to determine ablation efficien­cies and effective enthalpies of ablation (Q*) as a function of wavelength and radiant exposure/fluence. The experimental results have been analyzed to consider the physical and chemical processes associated with thermo-chemical ablation of human tissues by pulsed mid-infrared lasers. The present chapter summarizes the nature of pulsed HF chemical lasers and their match to tissue ablation requirements, presents quantitative tissue ablation results obtained using an rp HF chemical laser operating in the λ= 2.7 – 3.0 Jim wavelength region, and discuss tissue ablation mechanisms.


Hydrogen Fluoride Tissue Ablation Human Cornea Laser Angioplasty Chemical Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. L. Valderrama, R. F. Menefee, B. D. Krenek and J. M. Berry, “Chemical laser interactions with human corneal tissue”, SPIE Proc. Thermal and Optical Interactions with Biological and Related Composite Materials 1064:135 (1989)ADSGoogle Scholar
  2. 2.
    M. P. Sartori, P. D. Henry, G. L. Valderrama, R. F. Menefee, B. D. Krenek, L. G. Fredin and M. J. Berry, “Chemical laser interactions with human cardiovascular tissues”, SPIE Proc. - Laser Interaction with Tissue 908:34 (1988)Google Scholar
  3. 3.
    G. L. Valderrama, R. F. Menefee, B. D. Krenek, M. J. Berry, M. P. Sartori and P. D. Henry, “Chemical laser interactions with human cardiovascular tissue”, SPIE Proc. - Laser/Tissue Interaction 1202: 149 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    M. L. Wolbarsht, “Laser Surgery: CO2 or HF”, IEEE J. Quantum Electron. QE-20: 1427 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    H. Loertscher, S. Mandelbaum, R. K. Parrish II and J.-M. Parel, “Preliminary report on corneal incisions created by a hydrogen fluoride laser”, Am. J. Ophtalmol. 102:217 (1986)CrossRefGoogle Scholar
  6. 6.
    T. Marshall, S. Trokel, S. Rothery and R. Krueger, “The potential of an infrared hydrogen fluoride (HF) laser (3.0 µm) for corneal surgery”, Lasers in Ophtalmol. 1:49 (1986)Google Scholar
  7. 7.
    M. J. Berry, “The F + H2, D2, and HD reactions: chemical laser determination of the product vibrational state populations and the F + HD intramolecular kinetic isotope effect”, J. Chem. Phys. 59:6229 (1973).Google Scholar
  8. 8.
    A. Ben-Shaul, G. L. Hofacker and K. L. Kompa, “Characterization of inverted populations in chemical lasers by temperaturelike distributions: gain characteristics in the F + H2 → HF + H system”, J. Chem. Phys. 59:4664 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    M. J. Berry, “Chemical laser studies of energy partitioning into chemical reaction products”, in R.D. Levine and J. Jortner (Editors), “Molecular Energy Transfer”, Wiley, New York (1976)Google Scholar
  10. 10.
    A. Ben-Shaul, Y. Haas, K. L. Kompa and R. D. Levine, “Lasers and chemical change”, Springer-Verlag, New York (1981)CrossRefGoogle Scholar
  11. 11.
    G. L. Valderrama, “Laser/Tissue Interactions”, Ph. D. Dissertation, William Marsh Rice University, Houston, TX (1990)Google Scholar
  12. 12.
    L. M. A. Levine, L. G. Fredin and M. J. Berry, “Infrared absorption spectra of human corneal tissue and cured epoxy resin at temperatures up to 450 °C”, SPIE Proc. - Thermal and Optical Interactions with Biological and Related Composite Materials (1064: 131 (1989)ADSGoogle Scholar
  13. 13.
    A. Bailey, J. Baker, C. Rollins, E. Pugh, L. Popper and P. Nebolsine, “Simple models for laser-material interaction”, Report PSI-9445/SR-420, Physical Sciences Inc., Andover, MA (1989)Google Scholar
  14. 14.
    F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrel, J. E. Thomas, S. Strikwerda, J. R. Kramer and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation”, Lasers Surg. Med. 7:141 (1987)CrossRefGoogle Scholar
  15. 15.
    M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald and A. N. Syverud, “JANAF thermochemical tables, 3rd edition”, American Institute of Physics, New York (1986)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • G. L. Valderrama
    • 1
  • R. F. Menefee
    • 1
  • B. D. Krenek
    • 1
  • M. J. Berry
    • 1
  1. 1.Department of ChemistryLaser Applications Research Center, HARC; and Rice UniversityHoustonUSA

Personalised recommendations