Laser Surgery of the Eye: Phototoxicity Concerns

  • D. H. Sliney
Part of the NATO ASI Series book series (NSSB, volume 252)


Lasers have been employed extensively in ophthalmology for a variety of procedures and have the longest history of large-scale clinical use. In most applications there has been a concern for undesired side effects resulting from phototoxicity. This concern has been accentuated by recent interest in applying ultraviolet (UV) lasers to corneal refractive surgery and phakoablation of the lens. However, retinal phototoxicity resulting from scattered light from argon laser retinal photocoagulation is also a realistic potential hazard.


Ultraviolet Radiation Action Spectrum Ciliary Body Corneal Endothelium American National Standard Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Urbach (Ed), “The Biologic Effects of Ultraviolet Radiation”, Pergamon Press, New York (1969)Google Scholar
  2. 2.
    J. A. Parrish, R. R. Anderson, F. Urbach and D. Pitts, “UV-A, Biological Effects of Ultraviolet Radiation with Emphasis on Human Responses to Longwave Radiation”, Plenum Press, New York (1978)Google Scholar
  3. 3.
    W. F. Passchier and B. F. M. Bosnjakovic (Eds.), “Human Exposure to Ultraviolet Radiation: Risks and Regulations”, New York, Excerpts Medica Division, Elsevier Science Publishers (1987)Google Scholar
  4. 4.
    D. H. Sliney and M. L. Wolbarsht, “Safety with Lasers and Other Optical Sources”, Plenum Publishing Corp., New York (1980)Google Scholar
  5. 5.
    F. Urbach and R. W. Gange (Eds.), “The Biological Effects of UV-A Radiation”, Praeger Publishers, Westport, Connecticut, USA (1986)Google Scholar
  6. 6.
    J. J. Harding and K. J. Dilley, “Structural proteins of the mammalian lens: a review with emphasis on changes in development, aging and cataract”, Exp. Eye Res., 22(1):1–73 (1976)CrossRefGoogle Scholar
  7. 7.
    L. I. Grossweiner, “Photochemistry of proteins: a review”, Curr. Eye Res., 3(1):137–144 (1984)CrossRefGoogle Scholar
  8. 8.
    F. Hillenkamp, “Laser interactions with biological tissues”, in F. Hillenkamp, C. A. Sacchi and F. T. Arecchi, Eds., Lasers in Biology and Medicine, Plenum Press, New York (1980)Google Scholar
  9. 9.
    K. C. Smith, “The Science of Photobiology”, Plenum Press, New York (1988)Google Scholar
  10. 10.
    I. Willis, A. Kligman and J. Epstein, “Effects of long ultraviolet rays on human skin: photoprotective or photoaugmentative”, J. Invest. Dermatol., 59:416–420 (1972)CrossRefGoogle Scholar
  11. 11.
    W. H. Tung, K. T. Chylasck and U. P. Andley, “Lens hexokinase deactivation by near-uv radiation”, Curr. Eye Res., 7(3):257–263 (1988)CrossRefGoogle Scholar
  12. 12.
    J. Marshall, S. Trokel, S. Rothery and H. Schubert, “An ultrastruc-tural study of corneal incisions induced by an excimer laser at 193 nm”, Ophthalmology, 92:749–758 (1985)Google Scholar
  13. 13.
    C. A. Puliafito, K. Wong and R. F. Steinert, “Quantitative and ultra-structural studies of excimer laser ablation of the cornea at 193 and 248 nm”, Laser Surg. Med., 1:155–159 (1987)CrossRefGoogle Scholar
  14. 14.
    C. A. Cole, D. F. Forbes and P. D. Davies, “An action spectrum for UV photocarcinogenesis”, Photochem. Photobiol., 43(3):275–284 (1986)CrossRefGoogle Scholar
  15. 15.
    H. J. C. M. Sterenborg and J. C. van der Leun, “Action spectra for tumorigenesis by ultraviolet radiation” in: W. F. Passchier and B. F. M. Bosnjakovic (Eds), “Human Exposure to Ultraviolet Radiation: Risks and Regulations”, pp. 173–191, New York, Excerpta Medica Division, Elsevier Science Publishers (1987)Google Scholar
  16. 16.
    K. W. Hausser, “Influence of wavelength in radiation biology”, Strahlentherapie 28:25–44 (1928)Google Scholar
  17. 17a.
    D. G. Pitts, A. P. Cullen and P. D. Hacker, “Ultraviolet Effects from 295 to 400 nm in the Rabbit Eye”, Contract CDC-99-74-12, Nat. Inst, for Occup. Safety and Health, DHEW Pub. No. (NIOSH) 77-175, Cincinnati, Ohio (October 1977)Google Scholar
  18. 17b.
    see also: “Ocular effects of ultraviolet radiation from 295 to 365 nm”, Invest. Ophthal. Vis. Sci., 16(10):932–939 (1977)Google Scholar
  19. 18.
    M. L. Luckiesh, L. Holladay and A. H. Taylor, “Reaction of untanned human skin to ultraviolet radiation”, J. Opt. Soc. Am., 20:423–432 (1930)ADSCrossRefGoogle Scholar
  20. 19.
    W. R. Coblentz, R. Stair and J. M. Hogue, “The spectral erythemic relation of the skin to ultraviolet radiation”, Proc. Nat. Acad. Sci. US, 17:401–403 (1931)ADSCrossRefGoogle Scholar
  21. 20.
    A. F. McKinlay and B. L. Diffey, “A reference action spectrum for ultraviolet induced erythema in human skin”, in: W. F. Passchier and B. F. M. Bosnjakovic (Eds), “Human Exposure to Ultraviolet Radiation: Risks and Regulations”, pp. 83–87, New York, Excerpta Medica Division, Elsevier Science Publishers (1987)Google Scholar
  22. 21.
    J. A. Parrish, K. F. Jaenike and R. R. Anderson, “Erythema and melanogenesis action spectra of normal human skin”, Photochem. Photobiol. 36(2):187–191 (1982)CrossRefGoogle Scholar
  23. 22.
    M. A. Everett, R. L. Olsen and R. M. Sayer, “Ultraviolet erythema”, Arch. Dermatol. 92:713–719 (1965)CrossRefGoogle Scholar
  24. 23.
    R. S. Freeman, D. W. Owens, J. M. Knox and H. T. Hudson, “Relative energy requirements for an erythemal response of skin to monochromatic wavelengths of ultraviolet present in the solar spectrum”, J. Invest. Dermatol., 47:586–592 (1966)Google Scholar
  25. 24.
    D. Berger, F. Urbach and R. E. Davies, “The action spectrum of erythema induced by ultraviolet radiation”, Preliminary Report XIII Congressus Internationalis Dermatologiae (München 1967), pp.1112–1117, W. Jadassohn and C. G. Schirren, Eds., Springer-Verlag, New York (1968)Google Scholar
  26. 25.
    T. B. Fitzpatrick, M. A. Pathak, L. C. Harber, M. Seiji and A. Kukita (Eds), “Sunlight and Man, Normal and Abnormal Photobiologic Responses”, University of Tokyo Press, Tokyo, Japan (1974)Google Scholar
  27. 26.
    P. D. Forbes and P. D. Davies, “Factors that Influence Photocarcinogenesis”, in: J. A. Parrish, M. L. Kripke and W. L. Morison, Eds., Chapter 7, “Photoimmunology”, Plenum Publishing Corp., New York (1982)Google Scholar
  28. 27.
    World Health Organization (WHO), Environmental Health Criteria No. 14, Ultraviolet Radiation, jont publication of the United Nations Environmental Program, the International Radiation Protection Association and the World Health Organization, Geneva (1979)Google Scholar
  29. 28.
    J. Scotto, T. R. Fears and G. B. Gori, “Measurements of ultraviolet radiations in the United States and comparisons with skin cancer data”, US Department of Health, Education and Welfare Publication No. (NIH)80-2154, Government Printing Office, Washington (1980)Google Scholar
  30. 29.
    World Health Organization (WHO), Environmental Health Criteria No. 23, Lasers and Optical Radiation, joint publication of the United Nations Environmental Program, the International Radiation Protection Association and he World Health organization, Geneva (1982)Google Scholar
  31. 30.
    D. H. Sliney, “Physical factors in cataractogenesis: ambient ultraviolet radiation and temperature”, Invest. Ophthalmol. Vis. Sci., 27(5):781–790 (1986)Google Scholar
  32. 31.
    D. H. Sliney, “Estimating the solar ultraviolet radiation exposure to an intraocular lens implant”, J. Cataract. Refract. Surg., 13(5):296–301 (1987)Google Scholar
  33. 32.
    D. G. Pitts, “The human ultraviolet action spectrum”, Am. J. Optom. Physiol. Optics, 51(12):946–960 (1974)Google Scholar
  34. 33.
    D. G. Pitts and T. J. Tredici, “The effects of ultraviolet on the eye”, Am. Ind. Hyg. Assoc. J., 32(4):235–246 (1971)CrossRefGoogle Scholar
  35. 34.
    A. Ringvold, “Cornea and ultraviolet radiation”, Acta Ophthalmol., 58:63–68 (1980)Google Scholar
  36. 35.
    A. Ringvold, “Aqueous humour and ultraviolet radiation”, Acta Ophthalmol. 58:69–82 (1980)Google Scholar
  37. 36.
    A. Ringvold, M. Davanger and E. G. Olsen, “Changes of the cornea endothelium after ultraviolet radiation”, Acta Ophthalmologica, 60:41–53 (1982)CrossRefGoogle Scholar
  38. 37.
    A. Ringvold and M. Davanger, “Changes in the rabbit corneal stroma caused by UV-radiation”, Acta Ophthalmologica, 63:601–606 (1985)CrossRefGoogle Scholar
  39. 38.
    A. Ringvold, “Damage of the cornea epithelium caused by ultraviolet radiation”, Acta Ophthalmologica, 61:898–907 (1983)CrossRefGoogle Scholar
  40. 39.
    E. G. Olsen and A. Ringvold, “Human cornea endothelium and ultraviolet radiation”, Acta Ophthalmologica, 60:54–56 (1982)CrossRefGoogle Scholar
  41. 40.
    A. P. Cullen, B. R. Chou, M. G. Hall and S. E. Jany, “Ultraviolet-B damages corneal endothelium”, Am. J. Optom. Physiol. Opt., 61(7):473478 (1984)Google Scholar
  42. 41.
    M. V. Riley, S. Susan, M. I. Peters and C. A. Schwartz, “The effects of UV-B irradiation on the corneal endothelium”, Curr. Eye Res., 6(8):1021–1033 (1987)CrossRefGoogle Scholar
  43. 42.
    J. A. Zuclich and J. S. Connolly, “Ocular damage induced by near-ul-traviolet laser radiation”, Invest. Ophthalm. 15(9):760–764 (1976)Google Scholar
  44. 43.
    S. Takise, S. Horiguchi, I. Karai, S. Matsumura, M. Harima, T. Miki, S. Yoshikawa and H. Yamashita, “Effects of ultraviolet laser beam irradiation on rabbit cornea and lens”, Sangyo Igaku, 30(2):112–120 (1988)CrossRefGoogle Scholar
  45. 44.
    G. A. Peyman, J. R. Kuszak and K. Weckstrom, “Effects of Xe-Cl excimer laser on the eyelid and anterior segment structures”, Arch. Ophthalmol., 104:118–122 (1986)CrossRefGoogle Scholar
  46. 45.
    H. R. Taylor, S. K. West, F. S. Rosenthal, B. Munoz, H. S. Newland, H. Abbey and E. A. Emmett, “Effect of ultraviolet radiation on cataract formation”, New Engl. J. Med. 319:1429–1433 (1988)CrossRefGoogle Scholar
  47. 46.
    D. H. Sliney, “Unintentional exposure to ultraviolet radiation: Risk reduction and exposure limits”, _in: “Human Exposure to Ultraviolet Radiation: Risks and Regulations” (Eds: W. F. Passchier and B. F. M. Bosnjakovic), New York, Excerpta Medica Divsion, Elsevier Science Publishers, pp. 425–437 (1987)Google Scholar
  48. 47.
    W. T. Ham, H. A. Mueller, J. J. Ruffolo, D. Guerry III and R. K. Guerry, “Action spectrum for retinal injury from near ultraviolet radiation in the aphakic monkey”, Am. J. Ophthalmol., 93(3):299–306 (1982)Google Scholar
  49. 48.
    K. E. Kopecky, G. W. Pugh Jr, D. E. Hughes, G. D. Booth and N. F. Cheville, “Biological effect of ultraviolet radiation on cattle”, Am. J. Vet. Res., 40(12):1783–1788 (1979)Google Scholar
  50. 49.
    M. F. Lavin, P. A. Jennings and D. J. Hughes, “Bovine ocular squamous cell carcinoma: UV sensitivity in lymphocytes”, Photochem. Photobiol. 35(5):685–689 (1982)CrossRefGoogle Scholar
  51. 50.
    S. Stenson, “Ocular findings in xeriderma pigmentosum: report of two cases”, Ann. Ophthalmol., 14(6):580–585 (1982)Google Scholar
  52. 51.
    D. H. Sliney, “The merits of an envelope action spectrum for ultraviolet radiation exposure criteria”, Am. Ind. Hyg. Assoc. J., 33:644–653 (1972)CrossRefGoogle Scholar
  53. 52.
    International Radiation Protection Association (IRPA): “Proposed change to the IRPA 1985 guidelines limits of exposure to ultraviolet radiation”, Health Physics, 56(6):971–972 (1989)Google Scholar
  54. 53.
    American Conference of Governmental Industrial Hygienists (ACGIH), Threshold Limit Values (TLV’s) and Biological Exposure Indices for 1989–1990, ACGIH, Cincinnati, Ohio, USA (1989)Google Scholar
  55. 54.
    American National Standard Institute (ANSI), Safe Use of Lasers, Standard Z-136. 1-1986, American National Standard Institute, New York, published by Laser Institute of America, Toledo (1986)Google Scholar
  56. 55a.
    International Radiation Protection Association (IRPA), “Guidelines for limits of human exposure to laser radiation”, Health Physics, 49(2):341359 (1985)Google Scholar
  57. 55b.
    and change: “Recommendations for minor updates to the IRPA 1985 guidelines on limits of exposure to laser radiation”, Health Phys. 54(5):573–573 (1988)Google Scholar
  58. 56.
    N. Mueller-Stoltzenberg, G. Mueller and N. Stange, “Retinal UV exposition, during endocapsular phacoablation at 308 nm”, Lasers and Light in Ophthalmology, 2(3):197 (1989)Google Scholar
  59. 57.
    R. H. Keates, D. E. Genstler and S. Tarabichi, “Ultraviolet light transmission of the lens capsule”, Ophthalmic Surg. 13(5):374–376 (1982)Google Scholar
  60. 58.
    M. A. Mainster, “Spectral transmission of intraocular lenses and retinal damage from intense light sources”, Am. J. Ophthalmol. 85:167170 (1978)Google Scholar
  61. 59.
    L. A. Yanuzzi, Y. L. Fisher, A. Krueger and J. Slakter, “Solar retinopathy, a photobiological and geophysical analysis”, Tr. Am. Ophthalmol. Soc, 85:120–158 (1987)Google Scholar
  62. 60.
    S. L. Trokel, R. Srinivasan and B. Braren, “Excimer laser surgery of the corneas”, Am. J. Ophthalmol., 96:710–715 (1983)Google Scholar
  63. 61.
    C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm and C. M. Adler, “Excimer laser ablation of the cornea and lens”, Ophthalmology, 92 (6):741–748 (1985)Google Scholar
  64. 62.
    J. Marshall, S. L. Trokel, S. Rothery and R. R. Krueger, “Photoablative reprofiling of the cornea using an excimer laser: photorefractive keratectomy”, Lasers in Ophthalmol., 1:21–48 (1986)Google Scholar
  65. 63.
    J. Marshall, S. L. Trokel, S. Rothery and R. R. Krueger, “A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser”, Br. J. Ophthalmol. 70:482–501 (1986)CrossRefGoogle Scholar
  66. 64.
    J. Marshall, S. L. Trokel, S. Rothery and R. R. Krueger, “Long term healing of the central cornea after photorefractive keratectomy using an excimer laser”, Ophthalmology, 95:1411–1421 (1988)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • D. H. Sliney
    • 1
  1. 1.Laser Microwave DivisionUS Army Environmental Hygiene AgencyAberdeen Proving GroundUSA

Personalised recommendations