Modelling and Measurements of Light Propagation in Tissue for Diagnostic and Therapeutic Applications

  • B. C. Wilson
Part of the NATO ASI Series book series (NSSB, volume 252)


The propagation of light (ultraviolet, visible and infrared) in tissue is fundamental to many diagnostic and therapeutic applications in photomedicine. The former are based on the effect of tissues on light, as in, for example, diffuse transmittance or reflectance spectroscopy, and fluorescence spectroscopy. Therapeutic applications, which depend on the effect of light on tissue involve the absorption of light energy by tissue chromophores, leading to specific or non-specific photophysical/photochemical changes. In both cases, the spatial (and temporal) distribution of light fluence is important, and is determined essentially by the optical properties of the tissue.


Diffuse Reflectance Light Propagation Diffuse Transmittance UROCANIC Acid Light Fluence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ishimaru, “Wave Propagation and Scattering in Random Media”, Academic Press, New York (1978)Google Scholar
  2. 2.
    P. Parsa, S.L. Jacques and N.S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm”, Appl. Opt. 28:2325 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    S. T. Flock, B.C. Wilson and M.S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm”, Med. Phys. 14:835 (1987)CrossRefGoogle Scholar
  4. 4.
    R. Marchesini, A. Bertoni, S. Andreola, E. Melloni and A.E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro”, Appl. Opt. 28:2318 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    V. G. Peters, D.R. Wyman, M.S. Patterson and G.L. Frank, “Optical properties of normal and deceased human breast tissues in the visible and near infrared”, Phys. Med. Biol (in press)Google Scholar
  6. 6.
    J. M. Steinke and A.P. Shepherd, “Diffusion model of the optical absorbance of whole blood”, J. Opt. Soc. Am. 5:813 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    B. C. Wilson, W.P. Jeeves and D.M. Lowe, “In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues”, Photochem. Photobiol. 42, 153 (1985)CrossRefGoogle Scholar
  8. 8.
    B. C. Wilson and M.S. Patterson, “The physics of photodynamic therapy” Phys. Med. Biol. 31:327 (1986)CrossRefGoogle Scholar
  9. 9.
    W. M. Star, J.P.A. Marijnissen and M.J.C. van Gemert, “Light dosimetry status and prospects”, J. Photochem. Photobiol. B1:149 (1987)Google Scholar
  10. 10a.
    S. T. Flock, M.S. Patterson, B.C. Wilson and D.R. Wyman, “Monte Carlo modelling of light propagation in highly scattering tissues Parts I and II”, IEEE Trans. Biomed. Eng. 36:1162 (1989)CrossRefGoogle Scholar
  11. 10b.
    S. T. Flock, M.S. Patterson, B.C. Wilson and D.R. Wyman, “Monte Carlo modelling of light propagation in highly scattering tissues Parts I and II”, IEEE Trans. Biomed. Eng. 36:1169 (1989)CrossRefGoogle Scholar
  12. 11.
    M. S. Patterson, E. Schwartz and B.C. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensi-tizer concentration in tissue during photodynamic therapy”, Proc. SPIE 1065:115 (1989)ADSGoogle Scholar
  13. 12.
    B. C. Wilson, T.J. Farrell and M.S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizer in vivo”, Proc. SPIE (in press)Google Scholar
  14. 13.
    M. S. Patterson, B. Chance and B.C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties”, Appl. Opt. 28:2331 (1989)ADSCrossRefGoogle Scholar
  15. 14.
    W. M. Star, “Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry”, SPIE Inst. Series IS5:146 (1989)Google Scholar
  16. 15.
    B. C. Wilson, M.S. Patterson and D.M. Burns, “Effect of photosensitize concentration in tissue on the penetration depth of photoactivating light”, Lasers Med. Sci. 1:235 (1986)CrossRefGoogle Scholar
  17. 16.
    J. P. A. Marijnissen and W.M. Star, “Quantitative light dosimetry in vitro and in vivo”, Lasers Surg. Med. 7:235 (1987)Google Scholar
  18. 17.
    R. R. Anderson, H. Beck, U. Bruggemann, W. Farinelli, S. L. Jacques and J. A. Parrish, “Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry”, Appl. Opt. 28:2256 (1989)ADSCrossRefGoogle Scholar
  19. 18.
    U. Bernini, R. Reccia, P. Russo and A. Scala, “Quantitative photo-acoustic spectroscopy of cateractous human lenses”, J. Photochem. Photobiol. B4:407 (1990)Google Scholar
  20. 19.
    B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen and S. Jacques “The potential of time-resolved reflectance measurements for the noninvasive determination of tissue optical properties”, Proc. SPIE 1064:97 (1989)ADSGoogle Scholar
  21. 20.
    B. Chance, J. S. Leigh, H. E. Miyake, D. S. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain”, Proc. Natl. Acad. Sci. 85:4971 (1988)ADSCrossRefGoogle Scholar
  22. 21.
    R. Nossal, R.F. Bonner and G.H. Weiss, “Influence of path length on remote optical sensing of properties of biological tissue”, Appl. Opt. 28:2238 (1989)ADSCrossRefGoogle Scholar
  23. 22.
    M. S. Paterson, J. D. Moulton, B. C. Wilson and B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry”, Proc. SPIE 1203 (in press)Google Scholar
  24. 23.
    B. Chance, M. Maris, J. Sorge and M. Z. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissues”, Proc. SPIE (in press)Google Scholar
  25. 24.
    J. R. Lacowitz, K. W. Berndt and M. L. Johnson, “Frequency and time-domain measurements of photon migration in scattering media and tissue”, Biophys. Soc, Baltimore (abstract) (1990)Google Scholar
  26. 25.
    B. C. Wilson, M. S. Patterson, S. T. Flock and D. R. Wyman, “Tissue optical properties in relation to light propagation models and in vivo dosimetry”, _i_n: Photon Migration in Tissue, B. Chance, ed., Plenum Publ. Corp., New York:25 (1990)Google Scholar
  27. 26.
    S. L. Jacques, “Time resolved reflectance spectroscopy in turbid tissues”, IEEE Trans. Biomed. Eng. 36:1155 (1989)CrossRefGoogle Scholar
  28. 27.
    S. L. Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissues”, Appl. Opt. 28:2223 (1989)ADSCrossRefGoogle Scholar
  29. 28.
    W. R. Potter, “PDT dosimetry and response”, Proc. SPIE 1065:88 (1989)ADSGoogle Scholar
  30. 29.
    M. Keijzer, W. M. Star and P. R. M. Storchi, “Optical diffusion in layered media”, Appl. Opt. 27:1820 (1988)ADSCrossRefGoogle Scholar
  31. 30.
    G. J. Derbyshire, D. K. Bogen and M. Unger, “Thermally induced optical property changes in myocardium at 1.06 m”, Lasers Surg. Med. 10:28 (1990)CrossRefGoogle Scholar
  32. 31.
    L. O. Svaasand, C. J. Gomer and A. E. Profio, “Laser-induced hyperthermia of ocular tumors”, Appl. Opt. 28:2280 (1989)ADSCrossRefGoogle Scholar
  33. 32.
    D. Wyman, C.-L. Swift, R. Siwek and B. C. Wilson, “Optimal temperature control in laser hyperthermia”, Proc. SPIE 1201 (in press)Google Scholar
  34. 33.
    N. Kollias and A. Bager, “On the assessment of melanin in human skin in vivo”, Photochem. Photobiol. 43:49 (1986)CrossRefGoogle Scholar
  35. 34.
    J. W. Feather, M. Hajizadeh-Saffar, G. Leslie and J. B. Dawson, “A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid assessment of skin pigments”, Phys. Med. Biol. 34:807 (1987)CrossRefGoogle Scholar
  36. 35.
    R. R. Anderson and J. A. Parrish, “Optical properties of human skin”, in “The Science of Photomedicine”, J.D. Regan and J.A. Parrish, eds., Plenum Press, New York: 147 (1982)Google Scholar
  37. 36.
    J. M. Conway, K. H. Norris and C. E. Bodwell, “A new approach for the estimation of body composition: infrared interactance”, Am. J. Clin. Nutr. 40:1123 (1984)Google Scholar
  38. 37.
    S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the non-invasive monitoring of cerebral oxygenation”, Biochim. Biophys. Acta 933:184 (1988)CrossRefGoogle Scholar
  39. 38.
    M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination”, Med. Biol. Eng. Comp. 26:289 (1988)CrossRefGoogle Scholar
  40. 39.
    B. Chance, M. Maris, J. Sorge and M. Z. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissue”, Proc. SPIE (in press)Google Scholar
  41. 40.
    R. L. Egan and P. D. Dolan, “Optical spectroscopy: pre-mammography marker”, Acta Radiol. 29:497 (1988)Google Scholar
  42. 41.
    A. Grinwald, E. Lieke, R. D. Frostig, C. D. Gilbert and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsec signals”, Nature 324:361 (1986)ADSCrossRefGoogle Scholar
  43. 42.
    R. Anderson Engles, “Laser-induced fluorescence for medical diagnosis Lund Rep. Atomic Physics, 108 (1989)Google Scholar
  44. 43.
    R. Richards-Kortum, R. P. Rava, M. Fitzmaurice, L. L. Tong, N. B. Ratcliff, J. R. Kramer and M. S. Feld, “A one-layer model of laser-induced fluorescence for diagnosis of disease in human tissue: applications to atherosclerosis”, IEEE Trans. Biomed. Eng. 36:1222 (1989)CrossRefGoogle Scholar
  45. 44.
    R. J. Gush, T. A. King and M. I. V. Jayson, “Aspects of laser light scattering from skin tissue with application to laser Doppler blood flow measurement”, Phys. Med. Biol. 29:1463 (1984)CrossRefGoogle Scholar
  46. 45.
    F. W. Leung, T. Morishita, E. H. Livingston, T. Reedy and P. H. Guth, “Reflectance spectrophotometry for the assessment of gastroduodenal mucosal perfusion”, Am. J. Physiol. 252:G797 (1987)Google Scholar
  47. 46.
    D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical path length through tissue from direct time of flight measurement”, Phys. Med. Biol. 33:1433 (1988)CrossRefGoogle Scholar
  48. 47.
    J. C. Hebden and R. A. Kruger, “A time-of-flight imaging system: simulations and preliminary experimental results”, Proc. SPIE (in press)Google Scholar
  49. 48.
    J. W. Feather, K. S. Ryatt, J. B. Dawson, J. A. Cotterill, D. J. Barker and D. J. Ellis, “Reflectance spectrophotometric quantification of skin colour changes induced by topical corticosteroid preparations”, Br. J. Dermatol. 106:437 (1982)CrossRefGoogle Scholar
  50. 49.
    G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysee, S. Debray, B. M. Hung and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination”, J. Biomed. Eng. 6:70 (1984)CrossRefGoogle Scholar
  51. 50.
    J. Hebden and R. A. Kruger, “Simulating the performance of a time-of-flight transillumination imaging system”, Proc. SPIE 1305 (in press)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • B. C. Wilson
    • 1
  1. 1.Hamilton Regional Cancer Centre, Ontario Laser and Lightwave Research CenterMcMaster UniversityHamiltonCanada

Personalised recommendations