Laser Holography as a Technique in Experimental Medicine

  • H. Podbielska
Part of the NATO ASI Series book series (NSSB, volume 252)


Holography is a technique for recording and reconstructing light waves. Although a hologram is recorded on a flat surface, it produces a three-dimensional image. A conventional photograph records the real, two-dimensional image formed by a lens or a more complicated optical system. Optical detectors, like photographic film, respond only to irradiance, so only the distribution of real amplitude can be recorded and information about phase is lost. A hologram, however, records the intensity distribution that results from interference of the light scattered by an object and an additional wave coming directly from the coherent light source. When a holographic plate is developed and illuminated properly, it produces a three-dimensional image of the recorded object, thus information about both the amplitude and the phase of the scattered light is reconstructed.


Tympanic Membrane Holographic Interferometry Ossicular Chain Electronic Speckle Pattern Interferometry Stroboscopic Illumination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. K. Erf, (ed), “Holographic non-destructive testing”, Academic Press (1974)Google Scholar
  2. 2.
    C. M. Vest, “Holographic interferometry”, John Wiley and Sons (1979)Google Scholar
  3. 3.
    N. Abramson, “The making and evaluation of holograms”, Academic Press (1981)Google Scholar
  4. 4.
    E. Marom, A. A. Friesem and E. Wiener (eds), “Applications of Holography and optical Data Processing”, Pergamon Press (1977)Google Scholar
  5. 5.
    J. Ostrovsky, M. Butusov and G. Ostrovskaya, “Interferometry by Holography”, Springer Series in Optical Sciences, Springer-Verlag (1980)Google Scholar
  6. 6.
    P. Greguss (ed), “Holography in Medicine”, IPC Science and Technology Press (1975)Google Scholar
  7. 7.
    M. Hoke and G. V. Bally, Proc. Symp., 1976 Spec. Res. Area and Int. Conf. on Electrocochl. and Holography in Medicine, Münster (1976)Google Scholar
  8. 8.
    G. V. Bally (ed), “Holography in Medicine and Biology”, Springer Series in Optical Sciences, Springer Verlag (1979)Google Scholar
  9. 9.
    G. V. Bally and P. Greguss (eds), “Optics in Biomedical Sciences”, Springer Series in Optical Sciences, Springer Verlag (1982)Google Scholar
  10. 10.
    G. V. Bally, “Holography in Biomedicine”, SPIE, vol. 673, 327 (1987)Google Scholar
  11. 11.
    K. Piwernetz and G. V. Bally, “Holography in Orthopaedics”, 7, see in (8)Google Scholar
  12. 12.
    U. Hanser, “Holographische Bestimmung von Verformungen in der experimentellen Biomechanik”, Biomedizinische Technik, Erganzungs Band 23, 186 (1978)Google Scholar
  13. 13.
    U. Hanser, “Quantitative Evaluation of Holographic Deformation Investigation in Experimental Orthopaedics”, 27, see in (8)Google Scholar
  14. 14.
    D. Vukicevic, V. Nikolic, S. Vukicevic, J. Hancevic and Z. Sueur, “Holographic investigation of Mechanical Characteristics of the Complex Leg-Foot in Conditions of Lesion and Reconstruction”, 34, see in (8)Google Scholar
  15. 15.
    A. Kojima, R. Ogawa, N. Izuchi, T. Matsumoto, K. Iwata and R. Nagata, “Holographic investigation of mechanical properties of tibia fixed with an internal fixation plate”, Selected Proceedings of the Fifth Meeting of the European Society of Biomechanics, 243, Martinus Nijhoff Publisher (1987)Google Scholar
  16. 16.
    H. Podbielska and H. Kasprzak, “Biomechanical investigation of external fixing devices by holographic interferometry”, 363, Intern. Series on Biomechanics, Biomechanics XI-A, Free University Press, Amsterdam (1988)Google Scholar
  17. 17.
    H. Podbielska, H. Kasprzak and G. V. Bally, “Holographic investigation of different types of surgical fixing devices”, Proc. SPIE vol. 952, 843 (1988)Google Scholar
  18. 18.
    P. Jacquot, P. Rastogi and L. Pflug, “Mechanical testing of the external fixator by holographic interferometry”, Orthopaedics 7/3, 513, (1984)Google Scholar
  19. 19.
    M. Manley, B. Ovryn and L. Stern, “Evaluation of double-exposure holographic interferometry for biomechanical measurements in vitro”, J. of Ortop. Research 5, 144 (1987)CrossRefGoogle Scholar
  20. 20.
    B. Ovryn, M. Manley and L. Stern, “Holographic interferometry: a critique of technique and its potential for biomedical measurements”, Annals of Biomedical Engineering 15, 67 (1987)CrossRefGoogle Scholar
  21. 21.
    H. Bjelkhagen, “Holography in dentistry”, 157, see in (8)Google Scholar
  22. 22.
    I. Dirtoft, “Dental Holography”, Proc. SPIE vol. 370, 108 (1983)Google Scholar
  23. 23.
    R. Pryputniewicz, C. Burstone and D. Goldin, “Computer aided holographic analysis of displacement of human teeth”, J. Dent. Research 60(A), 515 (1981)Google Scholar
  24. 24.
    I. Dirtoft, “Holographic measurement of deformation in complete upper dentures - Clinical Application”, 100, see in (9)Google Scholar
  25. 25.
    P. Pavlin, D. Vukicevic and Z. Rajic, “Strain distribution in the facial skeleton arising from orthodontic appliance activity”, 177, see in (8)Google Scholar
  26. 26.
    J. Wagner, J. Ebbeni and M. Clemens, “Application de 1’interférometrie holographique à 1’étude du complexe tibio-péronière charge”, Acta Orthop. Belgica 41, 24 (1975)Google Scholar
  27. 27.
    D. Vukicevic et al., “Holographic investigation of the human pelvis”, 138, see in (9)Google Scholar
  28. 28.
    K. Piwernetz and R. Röhler, “Elastomechanical properties of trabecular bone from the human vertebral body”, 15, see in (8)Google Scholar
  29. 29.
    T. Matsumoto, A. Kojima, R. Ogawa, K. Iwata and R. Nagata, “Deformation Measurement of lumbar vertebra by holographic interferometry”, Proc. SPIE vol. 673, 340 (1987)ADSGoogle Scholar
  30. 30.
    H. Kasprzak, H. Podbielska and N. Sultanova, “Mechanical features of the human thigh bone investigated by means of holographic interferometry”, Acta Politechnica Scandinavia 150, 198 (1985)Google Scholar
  31. 31.
    H. Kasprzak, H. Podbielska and G. V. Bally, “Human tibia rigidity examined in bending and torsion loading by using double-exposure holographic interferometry”, SPIE vol. 1026, 196 (1988)ADSGoogle Scholar
  32. 32.
    J. Ebbeni, A. Huybrecht, S. Orloff, “Holographic determination of demineralization of bones”, Proc. SPIE vol. 211, 84 (1979)Google Scholar
  33. 33.
    A. Dancer et al., “Holographic interferometry applied to the investigation tympanic membrane displacements in guinea pig ears subjected to acoustic impulses”, J. Acous. Soc. of America 58, 223 (1975)ADSCrossRefGoogle Scholar
  34. 34.
    G. V. Bally, “Otological investigations in living man using holographic interferometry”, 198, see in (8)Google Scholar
  35. 35.
    S. Zivi and G. Humberstone, “Chest motion visualized by holographic interferometry”, Med. Res. Eng. 9, 5 (1970)Google Scholar
  36. 36.
    B. Hök, K. Nilson and H. Bjelkhagen, “Imaging of chest motion due to heart action by means of holographic interferometry”, Med. and Biol. Eng. and Comp. 16, 363 (1978)CrossRefGoogle Scholar
  37. 37.
    R. Pawluczyk et al., “Holographic vibration analysis of the frontal part of the human neck during singing”, 131, see in (9)Google Scholar
  38. 38.
    P. Rastogi, L. Pflug and R. Delez, “Noninvasive observation of embryonic behavior in chicks using holographic interference”, Appl. Opt., vol. 28 no. 7, 1378 (1989)ADSCrossRefGoogle Scholar
  39. 39.
    K. Harding, “Preliminary study of fracture fixation using holographic interferometry”, ,307, see in (7)Google Scholar
  40. 40.
    U. Hanser, “Anwendung der holographischen interferometrie in der experimentellen interferometrie”, 343, see in (7)Google Scholar
  41. 41.
    G. Häusler et al., “Holographische Deformationsmessungen zur Optimierung von Hüftgelenke Implantaten”, 349, see in (7)Google Scholar
  42. 42.
    H. Podbielska, G. V. Bally and H. Kasprzak, “Mechanical reaction of human skull bones to external load examined by holographic interferons try”, SPIE vol. 673, 321 (1987)ADSGoogle Scholar
  43. 43.
    J. Kinder et al.,, “Holographische Untersuchungen des thermischen Verhaltens von Schmelz, Dentin und ausgewälten Dentalstoffen”, 301, see in (7)Google Scholar
  44. 44.
    C. Sieger et al., “Measurement of vibration wave forms using temporally modulated holography”, 247, see in (9)Google Scholar
  45. 45.
    S. Khanna et al., “Tympanic membrane vibration analysis in cats studied by time averaged holography”, J. Acoust. Soc. Am. 51, 1904 (1972)ADSCrossRefGoogle Scholar
  46. 46.
    J. Tonndorf et al., “Tympanic membrane vibration in human cadavers ears studied by time-averaged holography”, J. Acoust. Soc. Am. 52, 1221 (1972)ADSCrossRefGoogle Scholar
  47. 47.
    T. Gundersen et al., “Holographic vibration analysis of the ossicular chain”, Acta Otholaryng. 82, 16 (1976)CrossRefGoogle Scholar
  48. 48.
    S. Khanna et al., “The vibratory patterns of the round window in cats”, J. Acoust. Soc. Am. 50, 1457 (1971)Google Scholar
  49. 49.
    K. Vaughan et al., “Holography of the eye: a critical review”, 77, in M. Wolbarsht (ed), “Laser applications in medicine and biology”, Plenum Press (1974)Google Scholar
  50. 50.
    J. Calkins, “Fundus camera holography”, 85, in (6)Google Scholar
  51. 51.
    J. Atkinson et al., “Measurement of the area of real contact between, and wear of, articulating surfaces using holographic interferometry “ , 289, see in (4)Google Scholar
  52. 52.
    M. Lalor et al., “Holographic studies of wear in implant materials and devices”, 20, see in (8)Google Scholar
  53. 53.
    M. Koukash et al., “The measurement of wear in dental restorations using digital image processing techniques”, Proc. IEEE No 265, 63, (1986)Google Scholar
  54. 54.
    J. Atkinson, D. Groves, M. Lalor, D. Cunningham and J. Wiliams, “The measurement of wear in dental restorations using laser dual source contouring”, Wear no. 76.91 (1982)CrossRefGoogle Scholar
  55. 55.
    O. Lokberg, “The present and future importance of ESPI”, SPIE vol. 746, 86 (1987)Google Scholar
  56. 56.
    O. Lokberg et al., “Use of ESPI to measure the vibration of the human eardrum in vivo and other biological movements”, 212, in (8)Google Scholar
  57. 57.
    O. Lokberg et al., “Bio-medical applications of ESPI”, 154 in (9)Google Scholar
  58. 58.
    O. Lokberg, “Electronic speckle pattern interferometry”, in O. Soares, “Optical metrology”, Martinus Nijhof Publisher, 542 (1987)Google Scholar
  59. 59.
    D. Hadbawnik, “Holographic endoscopy”, Optik 45, in German, 21 (1976)Google Scholar
  60. 60.
    G. Raviv et al., “In vivo holography of vocal cords”, Journ. of Surgical Oncology, 20, 213 (1982)CrossRefGoogle Scholar
  61. 61.
    G. Raviv, M. Marphic and M. Epstein, “Fiber optics delivery for endoscopic holography”, Optics Communication, 55, 261 (1985)ADSCrossRefGoogle Scholar
  62. 62.
    G. V. Bally et al., “Gradient index optical system in holographic endoscopy”, Appl. Opt., 23, 1725 (1984)ADSCrossRefGoogle Scholar
  63. 63.
    G. V. Bally et al., “Holographic endoscopy with gradient index optical system and optical fibers”, Appl. Opt., 25, 3425 (1984)CrossRefGoogle Scholar
  64. 64.
    T. Dudderar and J. Gilbert, “Fiber optic pulsed laser holography”, Appl. Phys. Lett., 43,730 (1983)ADSCrossRefGoogle Scholar
  65. 65.
    J. Gilbert, J. Herrick, “Holographic displacement analysis with multimode fiber optics”, Exp. Mech., 20, 315 (1981)CrossRefGoogle Scholar
  66. 66.
    H. Bjelkhagen, et al., “Holographic interferometry through imaging fibers using cw and pulsed lasers”, Proc. SPIE, vol. 746, 201, (1987)Google Scholar
  67. 67.
    U. Grünewald et al., “Interferometric investigations of the rabbit urinary bladder”, 147, in G. V. Bally, (ed), “Holography in Biology and Medicine”, Springer Verlag (1979)Google Scholar
  68. 68.
    G. V. Bally, “Otoscopic investigations by holographic interferometry”, 110, in G. V. Bally and P. Greguss (eds), “Optics in Biomedical Sciences” (1982)Google Scholar
  69. 69.
    69.P. Greguss, “Thoughts on the future of holography in biology and medicine”, Optics and Laser Techn., 253 (1975)Google Scholar
  70. 70.
    H. Ohzu and T. Kawara, “Application of Holography in Ophtalmology”, 133, see in (8)Google Scholar
  71. 71.
    R. Bexon et al., “In line holography and the assessment of aerosols”, Optics and Laser Techn., 8, 161 (1976)ADSCrossRefGoogle Scholar
  72. 72.
    E. Bals, “The principles and new developments in ultra low volume spraying”, Proc. of 5th Brit. Insect. Fungic. Conf., 189 (1969)Google Scholar
  73. 73.
    D. Gabor, “New Microscopic Principle”, Nature 161, 777 (1948)ADSCrossRefGoogle Scholar
  74. 74.
    Z. Antaloczy, I. Bukosza, Z. Fuzessy, F. Guimesi, “Three dimensional contour map holodisplay of the heart’s electric field”, Appl. Opt. 24, 11:1564 (1985)ADSCrossRefGoogle Scholar
  75. 75.
    K. Sugimura et al., “Clinical applications of multiplex holography”, SPIE vol. 370, 20 (1983)Google Scholar
  76. 76.
    K. Johnson et al., “Multiple holographic display of CT data”, Proc. SPIE vol. 367, 149 (1982)Google Scholar
  77. 77.
    J. Tsuijuchi, “Multiplex holograms and their application in medicine”, Proc. SPIE vol. 673, 312 (1987)ADSGoogle Scholar
  78. 78.
    D. Lacey, “Geometric modelling with image plane integral holography”, Proc. SPIE vol. 507, 121 (1984)Google Scholar
  79. 79.
    D. Lacey, “Radiologic Applications of Holography”, Proc. SPIE 761:114 (1987)Google Scholar
  80. 80.
    R. Ligten and H. Osterberg, “Holographic microscopy”, Nature 211:282 (1966)ADSCrossRefGoogle Scholar
  81. 81.
    M. Pluta, “Holographic microscopy” in M. Pluta (ed), “Optical Holography”, PWN, Warsaw, in polish (1980)Google Scholar
  82. 82.
    P. Greguss, “Laser as a probe in biomedical research”, in W. Waidelich (ed), Proc. Intern. Optoelectronics Cong., Laser 75:155, Munich (1975)Google Scholar
  83. 83.
    R. Ligten, “Holographic microscopy in exobiology”, 44, see in (6)Google Scholar
  84. 84.
    G. Ellis, “Holomicrography: Transformation of image during reconstruction a posteriori”, Science 154, 1195 (1966)ADSCrossRefGoogle Scholar
  85. 85.
    E. Feleppa, “Biomedical Applications of Holography”, Physics Today 22, 25 (1969)CrossRefGoogle Scholar
  86. 86.
    G. Knox et al., “Holographic motion picture microscopy”, Proc. Roy. Soc. London b 174, 115 (1966)ADSCrossRefGoogle Scholar
  87. 87.
    G. van der Haagen, “Ein Mikroskop mit holographischer 16-mm-Filmaufzeichnung Laser 2” (1972)Google Scholar
  88. 88.
    S. Almeida et al., “A real-time optical processor for pattern recognition of biological specimens”, 573, see in (4)Google Scholar
  89. 89.
    H. Caulfield, “The Application of coherent optical image processing for medicine and biology”, 39, see in (6)Google Scholar
  90. 90.
    B. Smolinska, “Holographic testing of human vision”, SPIE vol. 673, 412 (1987)Google Scholar
  91. 91.
    W. Komarnicki and B. Smolinska, “Optical correlator matched with human eye”, SPIE vol. 673, 414 (1987)Google Scholar
  92. 92.
    G. Stroke et al., “Image improvement in high-resolution electron microscopy using holographic image deconvolution”, Optik 41, 319 (1974)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • H. Podbielska
    • 1
  1. 1.Department of ElectronicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations