Biological Applications of Time-Gated Fluorescence Spectroscopy

  • R. Cubeddu
  • R. Ramponi
  • P. Taroni
Part of the NATO ASI Series book series (NSSB, volume 252)


The diagnostic use of fluorescence emission from both endogenous and exogenous fluorophores has found wide application in biology and medicine. At present in most cases fluorescence diagnosis is based on continuous wave (cw) measurements. This technique is applicable when the fluorescent emission from the target is sufficiently intense to be detected, and can be separated from the background through an appropriate selection of either excitation or emission wavelength. However in many cases quenching mechanisms strongly reduce the fluorescence, or the spectral overlapping of different fluorophors does not allow effective discrimination or localization of a target exogenous dye.


Uptake Time CTAB Concentration Gated Spectrum Amplitude Converter Single Photon Counting Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Lakowicz, “Principles of Fluorescence Spectroscopy”, Plenum Press, New York (1983)Google Scholar
  2. 2.
    C. S. Hoyt, R. R. Richards-Kortum, B. Costello, B. A. Sacks, C. Kittrell, N. B. Ratliff, J. R. Kramer and M. S. Feld, “Remote biomedical spectroscopic imaging of human artery wall”, Lasers Surg. Med., vol. 8, pp. 1–19 (1988)CrossRefGoogle Scholar
  3. 3.
    Y. Hayata, H. Kato, J. Ono, Y. Matsushima, N. Hayasi, T. Saito and N. Kawate, “Fluorescence fiberoptic bronchoscopy in the diagnosis of early stage lung cancer”, Recent Results Cancer Res., vol. 82, pp. 121–130 (1982)CrossRefGoogle Scholar
  4. 4.
    A. E. Profio, “Laser-excited diagnosis of hematoporphyrin derivative for the diagnosis of cancer”, IEEE J. Quant. Electron., vol. QE-20, pp. 1502–1506 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    R. Baumgartner, H. Fisslinger, D. Jocham, H. Lenz, L. Ruprecht, H. Stepp and E. Unsoeld, “A fluorescence imaging device for endoscopic detection of early stage cancer - instrumentational and experimental studies”, Photochem. Photobiol., vol. 6, pp. 759–763 (1987)CrossRefGoogle Scholar
  6. 6.
    S. Montan, K. Svanberg and S. Svanberg, “Multicolor imaging and contrast enhancement in cancer-tumor localization using laser-induced fluorescence in hematoporphyrin-derivative bearing tissue”, Opt. Lett., vol. 10, pp. 56–58 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    F. Docchio, R. Ramponi, C. A. Sacchi, G. Bottiroli and I. Freitas, “An automatic pulsed laser microfluorometer with high spatial and temporal resolution”, J. Microsc, vol. 134, pp. 151–160 (1984)CrossRefGoogle Scholar
  8. 8.
    S. Kinoshita, H. Ohta and T. Kushida, “Subnanosecond fluorescence life-time measuring system using single photon counting method with mode-locked laser excitation”, Rev. Sci. Instrum., vol. 52, pp. 572–575 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    H. Schneckenburger, H. K. Seidlitz and J. Eberz, “New trends in photo-biology: time-resolved fluorescence in photobiology”, J. Photochem. Photobiol. B: Biology, vol. 2, pp. 1–19 (1988)CrossRefGoogle Scholar
  10. 10.
    D. V. O’Connor and D. Phillips, “Time-correlated single photon counting”, Academic Press, London, New York, Ch. 7, pp. 211–251 (1984)Google Scholar
  11. 11.
    R. Cubeddu, F. Docchio, W. Q. Liu, R. Ramponi and P. Taroni, “A system for time-resolved laser fluorescence spectroscopy with multiple picosecond gating”, Rev. Sci. Instrum., vol. 59, pp. 2254–2259 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    R. L. Lipson, E. J. Baldes and A. M. Olsen, “The use of a derivative of hematoporhyrin in tumor detection”, J. Natl. Cancer Inst., vol. 26, pp. 1–8 (1961)Google Scholar
  13. 13.
    W. F. Keir, E. J. Land, A. H. MacLennan, D. J. McGarvey and T. G. Truscott, “Pulsed radiation studies of photodynamic sensitizers: the nature of DHE”, Photochem. Photobiol. 46: 587–589 (1987)CrossRefGoogle Scholar
  14. 14.
    S. Cova, A. Longoni, A. Andreoni and R. Cubeddu, “A semiconductor detector for measuring ultraweak fluorescence decays with 70 ps FWHM resolution”, IEEE J. Quantum Electron. QE-19: 630–634 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    R. Cubeddu, R. Ramponi and G. Bottiroli, “Time-resolved fluorescence spectroscopy of hematoporphyrin derivative in micelles”, Chem. Phys. Lett. 128: 439–442 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    R. Redmond, E. J. Land and T. G. Truscott, “A comparison of the photo-physical properties of porphyrins used in cancer phototherapy”, in: “Primary Photoprocesses in Biology and Medicine”, edited by R. V. Bensasson, G. Jori, E. J. Land and T. G. Truscott, Plenum Press, New York, pp. 335–339 (1985)Google Scholar
  17. 17.
    T. J. Dougherty, “Photosensitizers: therapy and detection of malignant tumors”, Photochem. Photobiol. 45: 879–889 (1987).MathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • R. Cubeddu
    • 1
  • R. Ramponi
    • 1
  • P. Taroni
    • 1
  1. 1.C.E.Q.S.E.C.N.R. Polytechnic of MilanMilanItaly

Personalised recommendations