Targets and Mechanisms of Action Associated with Laser Mediated Photosensitization

  • A. Ferrario
  • N. Rucker
  • S. Wong
  • M. Luna
  • C. J. Gomer
Part of the NATO ASI Series book series (NSSB, volume 252)


Photodynamic therapy (PDT) is the treatment of malignant lesions with visible light following the systemic administration of a tumorlocalizing photosensitizer. Hematoporphyrin derivative (HpD) and a purified component called Photofrin II are currently used in clinical PDT and this therapy continues to show promise in the treatment of solid tumors. However, it is clear that PDT is still at an early stage in its development. In this chapter, we will examine molecular, cellular, and in-vivo mechanisms related to PDT.


Photodynamic Therapy Heme Oxygenase Rose Bengal Ataxia Telangiectasia Calcium Ionophore A23187 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Jori and J. D. Spikes, “Photobiochemistry of porphyrins”, in: “Topic in Photomedicine”, K. C. Smith, ed., Plenum Press, New York (1984)Google Scholar
  2. 2.
    J. Moan, “Porphyrin-sensitized photodynamic ihactivation of cells: a review”, Laser Med. Sci., 1:5 (1986)CrossRefGoogle Scholar
  3. 3.
    R. Hilf, D. B. Smail, R. S. Murant, P. B. Leakey and S. L. Gibson, “Hematoporphyrin derivative-induced photosensitivity of mitochondrial succinate dehydrogenase and selected cytosolic enzyme of R3230 AC mammary adenocarcinomas of rats”, Cancer Res., 44:1483 (1984)Google Scholar
  4. 4.
    C. J. Gomer, “DNA damage and repair in CHO cells following hematoporphyrin photoradiation”, Cancer Lett. 11:161 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    C. J. Gomer, N. Rucker, A. Banerjee and W. F. Benedict, “Comparison of mutagenicity and induction of sister chromatid exchanges in Chinese hamster cells exposed to hematoporphyrin derivative, photoradiation, ionizing radiation, or U.V. radiation”, Cancer Res. 43:2622 (1983)Google Scholar
  6. 6.
    D. Kessel, “Sites of photosensitization by derivatives of hematoporphyrin”, Photochem. Photobiol. 44:489 (1986)CrossRefGoogle Scholar
  7. 7.
    S. H. Selman, M. Kreimer-Birnbaum, J. E. Klaunig, P. J. Goldblatt, R. W. Keck and S. L. Britton, “Blood flow in transplantable bladder tumors treated with hematoporphyrin derivative and light”, Cancer Res. 441924 (1984)Google Scholar
  8. 8.
    B. W. Henderson, S. M. Waldow, T. S. Mang, W. R. Potter, P. B. Malone and T. J. Dougherty, “Tumor destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic therapy”, Cancer Res. 45-572 (1985)Google Scholar
  9. 9.
    W. M. Star, H. P. A. Marijnissen, A. E. van der Berg-Blok, J. A. C. Versteeg, K. A. P. Franken and H. S. Reinhold, “Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in-vivo in sandwich observation chamber”, Cancer Res. 46:2532 (1986)Google Scholar
  10. 10.
    M. C. Berenbaum, G. W. Hall and A. D. Hayes, “Cerebral photosensiti-zation by hematoporphyrin derivative. Evidence for an endothelial site of action”, Br. J. Cancer 53:81 (1986)CrossRefGoogle Scholar
  11. 11.
    S. H. Selman, M. Kreimer-Birnbaum, P. J. Goldblatt, T. S. Anderson, R. W. Keck and S. L. Britton, “Jejunal blood flow after exposure to light in rats injected with hematoporphyrin derivative”, Cancer Res. 45: 6425 (1985)Google Scholar
  12. 12.
    C. Chang and T. J. Dougherty, “Photoradiation therapy: kinetics and thermodynamics of porphyrin uptake and loss in normal and malignant cells in culture (abstract)”, Radiat. Res. 74:498 (1978)Google Scholar
  13. 13.
    J. Moan, H. B. Steen, K. Keren and T. Christensen, “Uptake of hematoporphyrin derivative and sensitized photoinactivation of C3H cells with different oncogenic potential”, Cancer Lett. 14:291 (1981)Google Scholar
  14. 14.
    B. W. Henderson, D. A. Bellnier, B. Zirig and T. J. Dougherty, “Aspects of the cellular uptake and retention of hematoporphyrin derivative and their correlation with the biological response to PRT in-vitro”, in: “Porphyrin Photosensitization”, D. Kessel and T. J. Dougherty, eds., Plenum Press, New York (1983)Google Scholar
  15. 15.
    C. J. Gomer, N. Rucker and A. L. Murphree, “Differential cell photo sensitivity following Porphyrin photodynamic therapy”, Cancer Res. 48:4539 (1988)Google Scholar
  16. 16.
    C. J. Gomer, N. Rucker and A. L. Murphree, “Transformation and mutagenic potential of porphyrin photodynamic therapy in mammalian cells”, Int. J. Radiat. Biol. 53:651 (1988)CrossRefGoogle Scholar
  17. 17.
    M. J. Schlesinger, “Heat shock proteins: the search for functions”, J. Cell. Biol. 103:321 (1986)CrossRefGoogle Scholar
  18. 18.
    G. N. Teodorakis, D. J. Zand, P. T. Jotzbauer, G. T. Williams and R. I. Morimoto, “Hemin-induced transcriptional activation of the HSP70 gene during erythroid maturation in K562 cells is due to a heat shock factor-mediated stress response”, Mol. Cell. Biol. 9:3166 (1989)Google Scholar
  19. 19.
    S. S. Watowich and R. I. Morimoto, “Complex regulation of heat-shock and glucose-responsive genes in numan cells”, Mol. Cell.Biol. 8:393 (1988)Google Scholar
  20. 20.
    K. Weishaput, C. J. Gomer and T. J. Dougherty, “Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a marine tumor”, Cancer Res. 36:2326 (1976)Google Scholar
  21. 21.
    J. P. Keene, D. Kessel, E. J. Land, R. W. Redmond and T. G. Truscott, “Direct detection of singlet oxygen sensitized by hematoporphyrin and related compounds”, Photochem. Photobiol. 43:117 (1986)CrossRefGoogle Scholar
  22. 22.
    C. J. Gomer, N. Rucker, A. Ferrario and S. Wong, “Properties and applications of photodynamic therapy”, Radiat. Res. 120:1 (1989)CrossRefGoogle Scholar
  23. 23.
    A. J. Dorner, M. G. Krane and R. J. Kaufman, “Reduction of endogenous GRP78 levels improves secretion of a heterologous protein in CHO cells”, Mol. Cell. Biol. 8:4063 (1988)Google Scholar
  24. 24.
    I. A. S. Drummond, A. S. Lee, E. Resendez and R. A. Steinhardt, “Depletion of intracellular calcium stores by calcium ionophore A23187 induces the genes for glucose-regulated proteins in hamster fibroblasts”, J. Biol. Chem. 262:12801 (1987)Google Scholar
  25. 25.
    A. S. Lee, “The accumulation of three specific proteins related to glucose-regulated proteins in a temperature-sensitive mutant cell line K12”, J. Cell. Physiol. 106:119 (1981)CrossRefGoogle Scholar
  26. 26.
    W. G. Roberts, F.-Y. Shiau, J. S. Nelson, K. M. Smith and M. W. Berns, “In vitro characterization of monoaspartyl chlorin e6 and diaspartyl chlorin e6 for photodynamic therapy”, J. Natl. Cancer Inst. 80:330 (1988)CrossRefGoogle Scholar
  27. 27.
    M. W. Berns, A. Dahlman, F. M. Johnson, R. Burns, D. Sperling, M. Guiltinan, A. Siemens, R. Walter, W. Wright, M. Hammer-Wilson and A. Wile, “In-vitro cellular effects of hematoporphyrin derivative”, Cancer res. 42:2325 (1982)Google Scholar
  28. 28.
    J.-W. Shen, J. R. Subjeck, R. B. Lock and W. E. Ross, “Depletion of topoisomerase II in isolated nuclei during a glucose-regulated stress response”, Mol. Cell. Biol. 9:3284 (1989)Google Scholar
  29. 29.
    S. M. Waldow and T. J. Dougherty, “Interaction of hyperthermia and photodynamic therapy”, Radiat. Res. 97:380 (1984)CrossRefGoogle Scholar
  30. 30.
    C. J. Gomer, N. Rucker and S. Wong, “Porphyrin photosensitivity in cell lines expressing a heat resistant phenotype”, accepted for publication: Cancer Res. 1990Google Scholar
  31. 31.
    J. Gomer, A. Ferrario, N. Hayasji, N. Rucker, B. C. Szirth and A. L. Murphree, “Molecular, cellular, and tissue responses following photodynamic therapy”, Lasers Surg. Med. 8:450 (1988)CrossRefGoogle Scholar
  32. 32.
    S. M. Keyse and R. M. Tyrrel, “Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenate”, Proc. Natl. Acad. Sci. USA 86:99 (1989)ADSCrossRefGoogle Scholar
  33. 33.
    S. M. Keyse and R. M. Tyrrel, “Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts”, J. Biol. Chem. 262-142821 (1987)Google Scholar
  34. 34.
    D. K. Luttrull, O. Valdes-Aguilera, S. M. Linden, J. Paczkowski and D. J. Neckers, “Rose Bengal aggregation in rationally synthetized dimeric systems”, Photochem. Photobiol. 47:55 (1988)CrossRefGoogle Scholar
  35. 35.
    J. Alam, S. Shibahara and A. Smith, “Transcriptional activation of heme oxygenase gene by heme and cadmium in mouse hepatoma cells”, J. Biol. Chem. 264:6371 (1989)Google Scholar
  36. 36.
    H. Kageyama, T. Hiwasa, K. Tokunaga and S. Sakiyama, “Isolation and characterization of a complementary DNA clone for a M 32,000 protein which is induced with tumor promoters in Balb?c3T3 cells”, Cancer Res. 48:4795 (1988)Google Scholar
  37. 37.
    C. J. Gomer, A. Ferrario and A. L. Murphree, “The effect of localized photodynamic therapy on the induction of tumor metastasis”, Br. J. Cancer 56:27 (1987)CrossRefGoogle Scholar
  38. 38.
    C. A. Elmets and K. D. Bowen, “Immunological suppression in mice treated with hematoporphyrin derivative photoradiation”, Cancer Res. 46:168 (1986)Google Scholar
  39. 39.
    V. H. Fingar, T. J. Wieman and K. W. Doak, “Role of thromboxane and prostacyclin release on photodynamic therapy-induced tumor destruction”, Cancer res. 50: 2599 (1990)Google Scholar
  40. 40.
    A. Ferrario and C. J. Gomer, “Systemic toxicity in mice induced by localized porphyrin photodynamic therapy”, Cancer Res. 50:539 (1990)Google Scholar
  41. 41.
    J. van Lier, personal communicationGoogle Scholar
  42. 42.
    T. J. Dougherty, Photodynamic therapy (PDT) of malignant tumor”, CRC Crit. Rev. 2:83 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. Ferrario
    • 1
  • N. Rucker
    • 1
  • S. Wong
    • 1
  • M. Luna
    • 1
  • C. J. Gomer
    • 1
  1. 1.Childrens Hospital of Los AngelesUniversity of Southern California School of MedicineLos AngelesUSA

Personalised recommendations