Effects of Visible Laser Radiation on Cultured Cells

  • T. I. Karu
Part of the NATO ASI Series book series (NSSB, volume 252)


A developing therapeutic role for laser phototherapy in treating patients with skin diseases has led to interest in the effects of visible light on cultured cells. The need to examine the action of different visible radiation wavelengths upon cellular cultures arises partially from the knowledge that disorders which respond to laser phototherapy, such as indolent wounds and trophic ulcers may be associated with increased proliferation of cells surrounding the injuries.


HeLa Cell Action Spectrum HeNe Laser Laser Phototherapy Proliferate HeLa Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Parrish, “Photomedicine: a status report”, Photochem. Photobiol., 49 S, 649 (1989)Google Scholar
  2. 2.
    E. Mester, “Über die stimulierende Wirkung der Laserstrahlung auf die Wendheilung”, In: Der Laser, K. Dinstl and P.L. Fischer, Eds., Berlin-Heidelberg-New York: Springer, pp. 109–119 (1981)CrossRefGoogle Scholar
  3. 3.
    N. F. Gamaleya, “Laser biomedical research in the USSR”, in: Laser Application in Medicine and Biology, M. L. Wohlbarsht, Ed., New York, London: Plenum, 3:11–75 (1977)Google Scholar
  4. 4.
    T. I. Karu, L. V. Pyatibrat and G. S. Kalendo, “Biostimulation of HeLa cells by low-intensity visible light. Y. Stimulation of cell proliferation in vitro by He-Ne laser irradiation”, Il Nuovo Cimento, D, 9:1485–1494 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    A. H. W. Nias, “Clone size analysis: a parameter in the study of eel-population kinetics”, Cell. Tissue Kinet., 1:153–165 (1968)Google Scholar
  6. 6.
    F. Mauro, B. Falpo, G. Briganti, R. Elli and G. Zupi, “Effects of antineoplastic drugs on plateau-phase cultures of mammalian cells. I. Description of the plateau-phase system”, J. Natl. Cancer Institute, 52:705–713 (1974)Google Scholar
  7. 7.
    M. Hahn and J. B. Little, “Plateau-phase cultures of mammalian cells: An in vitro model for human cancer”, In “Current Topics in Rad. Res.”, M. Ebert, Ed., Amsterdam-London: North-Holland, 8:39–83 (1972)Google Scholar
  8. 8.
    O. I. Epifanova, I. N. Smolenskaya and V. A. Polunovsky, “Responses of proliferating and non-proliferating Chinese hamster cells to cytotoxic agents”, Br. J. Cancer, 37:377–385 (1978)CrossRefGoogle Scholar
  9. 9.
    T. I. Karu, “Effects of visible radiation on cultured cells”, Photochem. Photobiol., 52, N6 (1990)CrossRefGoogle Scholar
  10. 10.
    T. I. Karu and V. S. Letokhov, “Biological action of low-intensity monochromatic light in the visible range”, In: Laser Photobiology and Photomedicine, S. Martellucci and A. N. Chester, Eds., New York-London Plenum Press, pp. 57–66 (1985)Google Scholar
  11. 11.
    T. I. Karu, “Photobiological fundamentals of low-power laser therapy”, IEEE J. Quant. Electr., QE-23, 1703–1717 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    T. I. Karu, “Photobiology of Low-Power Laser Therapy”, Chur, London, New York: Harwood Academic Publ. (1989)Google Scholar
  13. 13.
    R. Baserga, “Multiplication and Division in Mammalian Cells”, New York, Basel: Marcel Dekker Inc. (1979)Google Scholar
  14. 14.
    J. C. Schaer, L. Ramsier and R. Schindler, “Studies on the division cycle of mammalian cells. III. Incorporation of labeled precursors into DNA of synchronously dividing cells in culture”, Exp. Cell. Res., 65:17–22 (1971)CrossRefGoogle Scholar
  15. 15.
    S. E. Pfeiffer and L. A. Tolmach, “RNA synthesis in synchronously growing populations of HeLa S cells. I. Rate of total RNA synthesis and its relationship to DNA synthesis”, J. Cell Physiol., 71:77–94 (1968)CrossRefGoogle Scholar
  16. 16.
    S. D. Kazmin, “Biochemistry of Mitotic Cycle of Tumour Celles”, Kiev: Naukova Dumka (in Russian) (1984)Google Scholar
  17. 17.
    T. I. Karu, G. S. Kalendo, V. V. Lobko and L. V. Pyatibrat, “Kinetics of tumour HeLa cell growth under subcultivation after irradiation by low intensity red light at the stationary growth phase”. Eksperimentalnaya Oncologiya, 6, N 1:60–63 (1984)Google Scholar
  18. 18.
    T. I. Karu, G. S. Kalendo, V. S. Letokhov and V. V. Lobko, “Biostinflation of He-La cells by low intensity visible light”, Il Nuovo Cimento D, 1:828–840 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    T. I. Karu, G. S. Kalendo, V. S. Letokhov and V. V. Lobko, “Biostimulation of He-La cells by low intensity visible light. II. Stimulation of DNA and RNA synthesis in a wide spectral range”. Il Nuovo Cimento D, 3:309–318 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    T. I. Karu, G. S. Kalendo, V. S. Letokhov and V. V. Lobko, “Biostimulation of He-La cells by low-intensity visible light. III. Stimulation of nucleic acid synthesis in plateau phase cells”, Il Nuovo Cimento D, 3:319–325 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    G. S. Kalendo, “Early Responses of Cells to Ionizing Radiation and Their Role in Radioprotection and Sensibilization”, Moscow: Energoizdat (in Russian)(1982)Google Scholar
  22. 22.
    T. T. Puck, P. I. Marcus and S. J. Cieciura, “Clonal growth of mammalian cells in vitro”, J. Exp. Medicine, 103: 272–283 (1956)Google Scholar
  23. 23.
    T. I. Karu, G. S. Kalendo and V.S. Letokhov, “Control of RNA synthesis rate in tumour cells HeLa by action of a low-intensity visible light of a copper laser”, Lettere al Nuovo Cimento, 32:55–59 (1981)CrossRefGoogle Scholar
  24. 24.
    T. I. Karu, V. S. Letokhov and V. V. Lobko, “Biostimulation of HeLa cells by low-intensity visible light. IV. Dichromatic irradiation”, Il Nuovo Cimento D, 5:483–496 (1985)ADSCrossRefGoogle Scholar
  25. 25.
    P. H. Kirschenbaum, ed. “Atlas of Protein Spectra in the Ultraviolet and Visible Regions”, New York, Washington, London: IFI/Plenum Press (1972)Google Scholar
  26. 26.
    W. Riidiger and H. Sheer, “Chromophores in photomorphogenesis”, In “Photomorphogenesis”, W. Shropshire, Jr. and M. Mohr Eds., Berlin, Heidelberg, New York, Tokyo: Springer, p. 119–183 (1983)Google Scholar
  27. 27.
    S. A. Gordon and K. Surrey, “Red and far red action on oxidative phosphorylation”, Radiat. Res., 12:325–339 (1960)CrossRefGoogle Scholar
  28. 28.
    S. A. Gordon, A. N. Stroud and C. H. Chen, “The induction of chromosomal aberrations in pig kidney cells by far red light”, Rad. Res., 45:274–287 (1971)CrossRefGoogle Scholar
  29. 29.
    N. A. Bogush, V. A. Mostovnikov, A. T. Pikulev and I. V. Khokholov, “Effect of biostimulation increases by combined action of blue and red laser light”, Dokl. Akad. Nauk Belorusskoi SSR (Proc. Belorous-sian Acad. Sci.), 26:951–954 (1982)Google Scholar
  30. 30.
    T. I. Karu, “Fundamentals of low-power laser photomedicine”, in “Laser Science and Technology”, A. N. Chester, V. S. Letokhov and S. Mar-tellucci Eds., New York, London, Plenum Press, p. 217–232 (1988)Google Scholar
  31. 31.
    A. White, P. Handler, E. Smith, R. Hill and I. Lehman, Eds., “Principles of Biochemistry”, New York, McCraw Book Co. (1978)Google Scholar
  32. 32.
    E. S. Vishnevskaya, T. A. Lozinova, O. N. Brzevskaya, O. S. Nedelina and L. P. Kayushin, “Effect of visible light on ATP-synthetase function of mitochondria”, Biofyzica, 29:637–639 (1984)Google Scholar
  33. 33.
    O. S. Nedelina, O. N. Brzevskaya and L. P. Kayushin, “Redox regulation in ATA synthesis”, Biophyzika, 30:119–191 (1985)Google Scholar
  34. 34.
    V. P. Zharov, T. I. Karu, Yu. P. Litnikov and O. A. Thiphlova, “Biological effect of radiation of a semiconductor laser in near infrared region”, Kvantovaya Electronika, 14:2135–2136 (1987)Google Scholar
  35. 35.
    U. Warnke and W. H. Weber, “Influence of light on cellular respiration”, in “Electromagnetic Bioinformation”, F. A. Popp Ed., Miinchen, Wien, Baltimore: (1987)Google Scholar
  36. 36.
    G. E. Fedoseyeva, T. I. Karu, T. S. Laypunova, N. A. Pomoshnikova and M. N. Meissel, “The activation of yeast metabolism with He-Ne laser radiation. II. Activity of enzymes of oxidative and phosphorous metabolism”, Laser Life Sci., 2:147–154 (1986)Google Scholar
  37. 37.
    G. E. Fedoseyeva, T. I. Karu, T. S. Laypunova, N. A. Pomoshnikova and M. N. Meissel, “The activation of yeast metabolism with He-Ne laser radiation. I. Protein synthesis in various cultures”, Laser Life Sci., 2:137–146 (1988)Google Scholar
  38. 38.
    L. N. Edmunds, “Blue light photoreception in the inhibition and synchronization of growth and transport in the yeast Saccharomyces”, in “Blue Light Syndrome”, M. Senger, Ed., Berlin, Heidelberg, New York: Springer, p. 584–596 (1980)CrossRefGoogle Scholar
  39. 39.
    B. L. Epel, “Inhibition of growth and respiration by visible and near visible light”, in Photophysiology, A. L. Giese Ed., New York, London, Academic Press, 8:209–229 (1965)Google Scholar
  40. 40.
    B. L. Epel and W. L. Butler, “Cytochrome a: destruction by light”, Science, 166:621–622 (1969)ADSCrossRefGoogle Scholar
  41. 41.
    J. Frederick, “Effects de differentes longueurs d’onde spectre visible sur des cellules vivantes cultivées in vitro”, C. R. Soc. Biol., 148:1678–1682 (1954)Google Scholar
  42. 42.
    D. E. Rounds and R. S. Olson, “The effect of intense visible light on cellular respiration”, Life Sci., 6:359–366 (1967)CrossRefGoogle Scholar
  43. 43.
    D. E. Rounds, R. S. Olson and F. M. Johnson, “The effect of the laser on cellular respiration”, Z. Zellforsch., 87:193–198 (1968)CrossRefGoogle Scholar
  44. 44.
    R. B. Webb and M. S. Brown, “Sensitivity of strains of E. coli differing in repair capability to far UV, near UV and visible radiations”, Photochem. Photobiol., 36:425–492 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • T. I. Karu
    • 1
  1. 1.Laser Technology CenterUSSR Academy of SciencesTroitzkRussia

Personalised recommendations