Skip to main content

The Efficiency of Laser Panretinal Photocoagulation for Diabetes

  • Chapter
Laser Systems for Photobiology and Photomedicine

Part of the book series: NATO ASI Series ((NSSB,volume 252))

  • 138 Accesses

Abstract

The proven efficacy of panretinal laser photocoagulation in controll­ing many varieties of proliferative retinal diseases is astonishing consi­dering the lack of agreement on the physiological mechanisms underlying this effect. However, a review of the evidence supports a model in which the effects (and effectiveness) of photocoagulation depend on the inter­action between the choroidal and retinal circulations. To a large degree, this interaction is controlled by the metabolism of the photoreceptor layers. The data available also suggest that in diabetes (and possibly other retinal disorders), altered states of metabolism influence retinal vascular oxygen tension and pH which in turn act together to induce the characteristic vascular pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. B. Hickam and R. Frayser, “Studies on the Retinal Circulation in Man. Observations on Vessel Diameter, Arteriovenous Oxygen Difference and Mean Circulation Time”, Circulation, 33:302–316 (1966)

    Google Scholar 

  2. S. S. Elgin, “Arteriovenous Oxygen Difference Across the Uveal Tract of the Dog Eye”, Invest. Ophthalmol. 3:417–426 (1964)

    Google Scholar 

  3. A. Aim and A. Bill, “Blood Flow and Oxygen Extraction in the Cat Uvea at Normal and High Intraocular Pressures”, Act. Physiol. Scand. 80:19–28 (1970)

    Article  Google Scholar 

  4. A. Bill, “Ocular Circulation”, in: “Adler’s Physiology of the Eye”, (R. A. Moses, ed.), C. V. Mosby Co., St. Louis (1975)

    Google Scholar 

  5. M. L. Wolbarsht and M. B. Landers, III. “The Rationale of Photocoagulation Therapy for Proliferative Diabetic Retinopathy: A Review and Model”, Ophthal. Surg., 11:235–245 (1980)

    Google Scholar 

  6. M. L. Wolbarsht, G. S. George, J. Kylstra, M. B. Landers III, and W. A. Shearin Jr., “Speculation on Carbon Dioxide and Retrolental Fibroplasia”, Pediatrics, 71:859–860, (1983a)

    Google Scholar 

  7. M. L. Wolbarsht, G. S. George, W. A. Shearin Jr., J. A. Kylstra, and M. B. Landers III, “A New Look at an Old Disease”, Ophthal. Surg., 14:919–924 (1983b)

    Google Scholar 

  8. J. J. Weiter, R. Zuckerman, and C. L. Schepens, “A Model for the Pathogenesis of Retrolental Fibroplasia Based on the Metabolic Control of Blood Vessel Development”, Ophthalmic Surg. 13, 12:1013–1017 (1982)

    Google Scholar 

  9. N. Ashton, B. Ward, and G. Serpell, “Role of Oxygen in the Genesis of Retrolental Fibroplasia”, Br. J. Ophthal., 38:433–440 (1953)

    Article  Google Scholar 

  10. D. Bracher, “Changes in Peripapillary Tortuosity of the Central Retinal Arteries in Newborns. A Phenomena Whose Underlying Mechanisms Need Clarification”, A. V. Graefe’s Arch. Ophthal., 218:211–217 (1982)

    Google Scholar 

  11. R. Fahrni, J. Thalmann, J. Weber, G. V. Muralt, D. Sidiropoulos, and D. Bracher, “Central Retinal Arteries in the Full-Term Newborn: Decrease in Width and Tortuosity During Uneventful Adaptation”, Helv. Paediat. Acta, 36:107–121 (1981)

    Google Scholar 

  12. N. Ashton and C. Cook, “Direct Observation of Oxygen on Developing Vessels”, Preliminary Report, Br. J. Ophthal. 38:433–440 (1954)

    Article  Google Scholar 

  13. M. B. Landers III, “Retinal Oxygenation Via the Choroidal Circulation”, Trans. Amer. Ophthalmol. Soc, 76:528–556, (1978)

    Google Scholar 

  14. M. L.Wolbarsht, E. Stefansson, and M. B. Landers III, “Retinal Oxygenation from the Choroid in Hyperoxia”, Exper. Biol. Environ. Sens. Aspects, 47:42–52 (1987)

    Google Scholar 

  15. L. M. Parver, C. R. Auker, and D. O. Carpenter, “Choroidal Circulation as a Heat Dissipative Mechanism in the Eye”, Amer. J. Ophthalmol. 89:641–646 (1980)

    Google Scholar 

  16. E. Stefansson, M. B. Landers III, and M. L. Wolbarsht, “Oxygenation and Vasodilatation in Relation to Diabetic and Other Proliferative Retinopathies”, Ophtal. Surg. 14:209–226 (1983)

    Google Scholar 

  17. A. G. Curtis and G. M. Seehar, “The Control of Cell Division by Tension or Diffusion”, Nature, 274:52–53 (1978)

    Article  ADS  Google Scholar 

  18. J. Folkman and A. Moscona, “Role of Cell Shape in Growth”, Nature, 273:345–349 (1978)

    Article  ADS  Google Scholar 

  19. M. L. Wolbarsht, M. B. Landers III, and E. Stefansson, “Vasodilatation and the Etiology of Diabetic Retinopathy: A New Model”, Ophthal. Surg. 12:104–107 (1981)

    Google Scholar 

  20. L. Feeney, “The Phagolysosomal System of the Pigment Epithelium. A Key to Retinal Disease”, Arch. Ophthal. 12:635 (1971)

    Google Scholar 

  21. W. K. Noell, V. S. Walker, B. S. Kang, and S. Berman, “Retinal Damage by Light in Rats”, Invest. Ophthal. 5:450–473 (1966)

    Google Scholar 

  22. E. L. Berson and J. Howard, “Temporal Aspects of the Electroretinogram in Sector Retinitis Pigmentosa”, Arch. Ophthal. 86:653–665 (1971)

    Article  Google Scholar 

  23. H. Kolb and P. Gouras, “Electron Microscopic Observations of Human Retinitis Pigmentosa, Dominantly Inherited”, Invest. Ophthal., 13:487 (1974)

    Google Scholar 

  24. J. G. Cunha-Vaz, “Studies on the Permeability of the Blood Retinal Barrier, Breakdown of the Blood Retinal Barrier by Circulation Disturbances”, Br. J. Ophthalmol. 50:505–516 (1966)

    Article  Google Scholar 

  25. J. G. Cunha-Vaz, J. R. F. Abreu, A. J. Campos, G. M. Figo, “Early Breakdown of the Blood Retinal Barrier in Diabetes”, Br. J. Ophthalmol. 59:649–656 (1975)

    Article  Google Scholar 

  26. J. G. Cunha-Vaz, “The Blood-Ocular Barriers”, Surb. Ophthalmol. 23:279–296 (1979)

    Article  Google Scholar 

  27. J. S. Reed, J. T. Ernest, T. K. Goldstick, “Hyperglycemia and the Retinal Circulation in Man”, Invest. Ophthalmol. Vis. Sci. 19 (Suppl.):168 (1980)

    Google Scholar 

  28. P. C. Brazy, G. Gullans, L. J. Mandel, and V. W. Dennis, “Metabolic Requirements for Inorganic Phosphate by the Rabbit Proximal Tubule: Evidence for a Crabtree Effect”, J. Clin. Invest. 70:53–62 (1982)

    Article  Google Scholar 

  29. H. G. Crabtree, “Observations on the Carbohydrate Metabolism of Tumours”, Biochem. J. 23:536–545 (1929)

    Google Scholar 

  30. L. Huang, C. Privalle, D. Serafin, and B. Klitzman, “Increased Survival of Skin Flaps by Scavengers of Superoxide Radical”, Fed. Amer. Soc. Experm. Biol. J., 1:129–132 (1987)

    Google Scholar 

  31. K. J. A. Davies, A. T. Quintanilha, G. A. Brooks, and L. Packer, “Free Radicals and Tissue Damage Produced by Exercise”, Biochem. Biophys. Res. Comm. 107:1198–1205 (1982)

    Article  Google Scholar 

  32. M. L. Wolbarsht and I. Fridovich, “Hypothesis: Hyperoxia During Reperfusion is a Factor in Reperfusion Injury”, Free Radical Biol. Med. 6:61–62 (1989)

    Article  Google Scholar 

  33. U. Fuch, W. Tinius, S. Gonschorek, and V. J. Scheidt, “Gesteigerte Kapillare Vulnerabilität beider Diabetischen Retinopathie”, Klin. Monat. f. Augenheilkunde, 192:234–236 (1988)

    Article  Google Scholar 

  34. D. A. Parks, G. B. Bulkley, D. N. Granger, S. R. Hamilton, and J. M. McCord, “Ischemic Injury in the Cat Small Intestine: Role of Superoxide Radicals”, Gastroenteroly, 82:9–15 (1982)

    Google Scholar 

  35. P. F. Davies, A. Remuzzi, E. J. Gordon, C. F. Dewey, Jr., and M. A. Gimbrone, Jr., “Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro”, Proc. Natl. Acad. Sci. (U.S.A.) 83:2114–2117 (1986)

    Article  ADS  Google Scholar 

  36. C. F. Dewey, Jr., S. R. Bussolari, M. A. Gimbrone, Jr., and P. F. Davies, “The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress”, J. Biochem. Engrg. 103:177–185 (1981)

    Article  Google Scholar 

  37. C. F. Dewey, Jr., “Effects of Fluid Flow on Living Vascular Cells”, J. Biochem. Engrg. 106:31–35 (1984)

    Article  Google Scholar 

  38. D. Mathews, P. La Sala, and Su. Chien, “Blood Rheology and Oxygen Transport”, IEEE Engineering in Medicine and Biology Magazine, 15–18 (1986)

    Google Scholar 

  39. H. L. Little, “The Role of Abnormal Hemorrheodynamics in the Pathosenses of Diabetic Retinopathy”, Trans. Amer. Ophthalmol. Soc, 74:573–636 (1976)

    Google Scholar 

  40. M. L. Wolbarsht, M. B. Landers III, and L. Rand, “Modification of Retinal Vascularization by Interaction Between Retinal and Choroidal Circulation”, Invest. Ophthal. Vis. Sci. 12 Suppl., 224 (1978)

    Google Scholar 

  41. M. L. Wolbarsht and M. B. Landers III, “Some Considerations for Choosing the Wavelength Appropriate for Laser Photocoagulation of the Retina”, pp. 11-19, Jin: Laser Treatment and Photocoagulation of the Eye, ed. by R. Birngruber and V. P. Gabel, Docum. Ophthal. Proc. Series 36, Dr. W. Junk, The Hague (1984a)

    Google Scholar 

  42. W. T. Ham, H. A. Mueller, J. J. Ruffolo, P. Guerry, III and R. K. Guerry, “Action Spectrum for Retinal Injury from Near Ultraviolet Radiation to the Aphakik Monkey”, Amer. J. Ophthalmol. 93:299–306 (1982)

    Google Scholar 

  43. M. L. Wolbarsht and M. B. Landers III, “Endophotocoagulation With Near Ultraviolet Radiation”, pp. 289–293, In: “Laser Treatment and Photocoagulation of the Eye”, R. Birngruber and V. P. Gabel, eds., 36, Dr. W. Junk, The Hague (1984b)

    Google Scholar 

  44. E. Stefansson, L. M. Cobo, D. Robinson, M. L. Wolbarsht, and M. B. Landers III, “Anterior Chamber Oxygen Tension Following Lens Extraction”, Invest. Ophthal. Vis. Sci. 25(3) Suppl., 254 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Wolbarsht, M.L., Landers, M.B. (1991). The Efficiency of Laser Panretinal Photocoagulation for Diabetes. In: Chester, A.N., Martellucci, S., Scheggi, A.M. (eds) Laser Systems for Photobiology and Photomedicine. NATO ASI Series, vol 252. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7287-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7287-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7289-9

  • Online ISBN: 978-1-4684-7287-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics