The Efficiency of Laser Panretinal Photocoagulation for Diabetes

  • M. L. Wolbarsht
  • M. B. LandersIII
Part of the NATO ASI Series book series (NSSB, volume 252)


The proven efficacy of panretinal laser photocoagulation in controll­ing many varieties of proliferative retinal diseases is astonishing consi­dering the lack of agreement on the physiological mechanisms underlying this effect. However, a review of the evidence supports a model in which the effects (and effectiveness) of photocoagulation depend on the inter­action between the choroidal and retinal circulations. To a large degree, this interaction is controlled by the metabolism of the photoreceptor layers. The data available also suggest that in diabetes (and possibly other retinal disorders), altered states of metabolism influence retinal vascular oxygen tension and pH which in turn act together to induce the characteristic vascular pathology.


Diabetic Retinopathy Retinitis Pigmentosa Retinal Vessel Proliferative Retinopathy Retinal Vasculature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Hickam and R. Frayser, “Studies on the Retinal Circulation in Man. Observations on Vessel Diameter, Arteriovenous Oxygen Difference and Mean Circulation Time”, Circulation, 33:302–316 (1966)Google Scholar
  2. 2.
    S. S. Elgin, “Arteriovenous Oxygen Difference Across the Uveal Tract of the Dog Eye”, Invest. Ophthalmol. 3:417–426 (1964)Google Scholar
  3. 3.
    A. Aim and A. Bill, “Blood Flow and Oxygen Extraction in the Cat Uvea at Normal and High Intraocular Pressures”, Act. Physiol. Scand. 80:19–28 (1970)CrossRefGoogle Scholar
  4. 4.
    A. Bill, “Ocular Circulation”, in: “Adler’s Physiology of the Eye”, (R. A. Moses, ed.), C. V. Mosby Co., St. Louis (1975)Google Scholar
  5. 5.
    M. L. Wolbarsht and M. B. Landers, III. “The Rationale of Photocoagulation Therapy for Proliferative Diabetic Retinopathy: A Review and Model”, Ophthal. Surg., 11:235–245 (1980)Google Scholar
  6. 6.
    M. L. Wolbarsht, G. S. George, J. Kylstra, M. B. Landers III, and W. A. Shearin Jr., “Speculation on Carbon Dioxide and Retrolental Fibroplasia”, Pediatrics, 71:859–860, (1983a)Google Scholar
  7. 7.
    M. L. Wolbarsht, G. S. George, W. A. Shearin Jr., J. A. Kylstra, and M. B. Landers III, “A New Look at an Old Disease”, Ophthal. Surg., 14:919–924 (1983b)Google Scholar
  8. 8.
    J. J. Weiter, R. Zuckerman, and C. L. Schepens, “A Model for the Pathogenesis of Retrolental Fibroplasia Based on the Metabolic Control of Blood Vessel Development”, Ophthalmic Surg. 13, 12:1013–1017 (1982)Google Scholar
  9. 9.
    N. Ashton, B. Ward, and G. Serpell, “Role of Oxygen in the Genesis of Retrolental Fibroplasia”, Br. J. Ophthal., 38:433–440 (1953)CrossRefGoogle Scholar
  10. 10.
    D. Bracher, “Changes in Peripapillary Tortuosity of the Central Retinal Arteries in Newborns. A Phenomena Whose Underlying Mechanisms Need Clarification”, A. V. Graefe’s Arch. Ophthal., 218:211–217 (1982)Google Scholar
  11. 11.
    R. Fahrni, J. Thalmann, J. Weber, G. V. Muralt, D. Sidiropoulos, and D. Bracher, “Central Retinal Arteries in the Full-Term Newborn: Decrease in Width and Tortuosity During Uneventful Adaptation”, Helv. Paediat. Acta, 36:107–121 (1981)Google Scholar
  12. 12.
    N. Ashton and C. Cook, “Direct Observation of Oxygen on Developing Vessels”, Preliminary Report, Br. J. Ophthal. 38:433–440 (1954)CrossRefGoogle Scholar
  13. 13.
    M. B. Landers III, “Retinal Oxygenation Via the Choroidal Circulation”, Trans. Amer. Ophthalmol. Soc, 76:528–556, (1978)Google Scholar
  14. 14.
    M. L.Wolbarsht, E. Stefansson, and M. B. Landers III, “Retinal Oxygenation from the Choroid in Hyperoxia”, Exper. Biol. Environ. Sens. Aspects, 47:42–52 (1987)Google Scholar
  15. 15.
    L. M. Parver, C. R. Auker, and D. O. Carpenter, “Choroidal Circulation as a Heat Dissipative Mechanism in the Eye”, Amer. J. Ophthalmol. 89:641–646 (1980)Google Scholar
  16. 16.
    E. Stefansson, M. B. Landers III, and M. L. Wolbarsht, “Oxygenation and Vasodilatation in Relation to Diabetic and Other Proliferative Retinopathies”, Ophtal. Surg. 14:209–226 (1983)Google Scholar
  17. 17.
    A. G. Curtis and G. M. Seehar, “The Control of Cell Division by Tension or Diffusion”, Nature, 274:52–53 (1978)ADSCrossRefGoogle Scholar
  18. 18.
    J. Folkman and A. Moscona, “Role of Cell Shape in Growth”, Nature, 273:345–349 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    M. L. Wolbarsht, M. B. Landers III, and E. Stefansson, “Vasodilatation and the Etiology of Diabetic Retinopathy: A New Model”, Ophthal. Surg. 12:104–107 (1981)Google Scholar
  20. 20.
    L. Feeney, “The Phagolysosomal System of the Pigment Epithelium. A Key to Retinal Disease”, Arch. Ophthal. 12:635 (1971)Google Scholar
  21. 21.
    W. K. Noell, V. S. Walker, B. S. Kang, and S. Berman, “Retinal Damage by Light in Rats”, Invest. Ophthal. 5:450–473 (1966)Google Scholar
  22. 22.
    E. L. Berson and J. Howard, “Temporal Aspects of the Electroretinogram in Sector Retinitis Pigmentosa”, Arch. Ophthal. 86:653–665 (1971)CrossRefGoogle Scholar
  23. 23.
    H. Kolb and P. Gouras, “Electron Microscopic Observations of Human Retinitis Pigmentosa, Dominantly Inherited”, Invest. Ophthal., 13:487 (1974)Google Scholar
  24. 24.
    J. G. Cunha-Vaz, “Studies on the Permeability of the Blood Retinal Barrier, Breakdown of the Blood Retinal Barrier by Circulation Disturbances”, Br. J. Ophthalmol. 50:505–516 (1966)CrossRefGoogle Scholar
  25. 25.
    J. G. Cunha-Vaz, J. R. F. Abreu, A. J. Campos, G. M. Figo, “Early Breakdown of the Blood Retinal Barrier in Diabetes”, Br. J. Ophthalmol. 59:649–656 (1975)CrossRefGoogle Scholar
  26. 26.
    J. G. Cunha-Vaz, “The Blood-Ocular Barriers”, Surb. Ophthalmol. 23:279–296 (1979)CrossRefGoogle Scholar
  27. 27.
    J. S. Reed, J. T. Ernest, T. K. Goldstick, “Hyperglycemia and the Retinal Circulation in Man”, Invest. Ophthalmol. Vis. Sci. 19 (Suppl.):168 (1980)Google Scholar
  28. 28.
    P. C. Brazy, G. Gullans, L. J. Mandel, and V. W. Dennis, “Metabolic Requirements for Inorganic Phosphate by the Rabbit Proximal Tubule: Evidence for a Crabtree Effect”, J. Clin. Invest. 70:53–62 (1982)CrossRefGoogle Scholar
  29. 29.
    H. G. Crabtree, “Observations on the Carbohydrate Metabolism of Tumours”, Biochem. J. 23:536–545 (1929)Google Scholar
  30. 30.
    L. Huang, C. Privalle, D. Serafin, and B. Klitzman, “Increased Survival of Skin Flaps by Scavengers of Superoxide Radical”, Fed. Amer. Soc. Experm. Biol. J., 1:129–132 (1987)Google Scholar
  31. 31.
    K. J. A. Davies, A. T. Quintanilha, G. A. Brooks, and L. Packer, “Free Radicals and Tissue Damage Produced by Exercise”, Biochem. Biophys. Res. Comm. 107:1198–1205 (1982)CrossRefGoogle Scholar
  32. 32.
    M. L. Wolbarsht and I. Fridovich, “Hypothesis: Hyperoxia During Reperfusion is a Factor in Reperfusion Injury”, Free Radical Biol. Med. 6:61–62 (1989)CrossRefGoogle Scholar
  33. 33.
    U. Fuch, W. Tinius, S. Gonschorek, and V. J. Scheidt, “Gesteigerte Kapillare Vulnerabilität beider Diabetischen Retinopathie”, Klin. Monat. f. Augenheilkunde, 192:234–236 (1988)CrossRefGoogle Scholar
  34. 34.
    D. A. Parks, G. B. Bulkley, D. N. Granger, S. R. Hamilton, and J. M. McCord, “Ischemic Injury in the Cat Small Intestine: Role of Superoxide Radicals”, Gastroenteroly, 82:9–15 (1982)Google Scholar
  35. 35.
    P. F. Davies, A. Remuzzi, E. J. Gordon, C. F. Dewey, Jr., and M. A. Gimbrone, Jr., “Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro”, Proc. Natl. Acad. Sci. (U.S.A.) 83:2114–2117 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    C. F. Dewey, Jr., S. R. Bussolari, M. A. Gimbrone, Jr., and P. F. Davies, “The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress”, J. Biochem. Engrg. 103:177–185 (1981)CrossRefGoogle Scholar
  37. 37.
    C. F. Dewey, Jr., “Effects of Fluid Flow on Living Vascular Cells”, J. Biochem. Engrg. 106:31–35 (1984)CrossRefGoogle Scholar
  38. 38.
    D. Mathews, P. La Sala, and Su. Chien, “Blood Rheology and Oxygen Transport”, IEEE Engineering in Medicine and Biology Magazine, 15–18 (1986)Google Scholar
  39. 39.
    H. L. Little, “The Role of Abnormal Hemorrheodynamics in the Pathosenses of Diabetic Retinopathy”, Trans. Amer. Ophthalmol. Soc, 74:573–636 (1976)Google Scholar
  40. 39.
    M. L. Wolbarsht, M. B. Landers III, and L. Rand, “Modification of Retinal Vascularization by Interaction Between Retinal and Choroidal Circulation”, Invest. Ophthal. Vis. Sci. 12 Suppl., 224 (1978)Google Scholar
  41. 41.
    M. L. Wolbarsht and M. B. Landers III, “Some Considerations for Choosing the Wavelength Appropriate for Laser Photocoagulation of the Retina”, pp. 11-19, Jin: Laser Treatment and Photocoagulation of the Eye, ed. by R. Birngruber and V. P. Gabel, Docum. Ophthal. Proc. Series 36, Dr. W. Junk, The Hague (1984a)Google Scholar
  42. 42.
    W. T. Ham, H. A. Mueller, J. J. Ruffolo, P. Guerry, III and R. K. Guerry, “Action Spectrum for Retinal Injury from Near Ultraviolet Radiation to the Aphakik Monkey”, Amer. J. Ophthalmol. 93:299–306 (1982)Google Scholar
  43. 43.
    M. L. Wolbarsht and M. B. Landers III, “Endophotocoagulation With Near Ultraviolet Radiation”, pp. 289–293, In: “Laser Treatment and Photocoagulation of the Eye”, R. Birngruber and V. P. Gabel, eds., 36, Dr. W. Junk, The Hague (1984b)Google Scholar
  44. 44.
    E. Stefansson, L. M. Cobo, D. Robinson, M. L. Wolbarsht, and M. B. Landers III, “Anterior Chamber Oxygen Tension Following Lens Extraction”, Invest. Ophthal. Vis. Sci. 25(3) Suppl., 254 (1984)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • M. L. Wolbarsht
    • 1
  • M. B. LandersIII
    • 2
  1. 1.Department of PsychologyDuke UniversityDurhamUSA
  2. 2.Department of OphthalmologyUniversity of CaliforniaSacramentoUSA

Personalised recommendations