Skip to main content

Part of the book series: NATO ASI Series Advanced Science Institutes Series ((NSSA,volume 202))

Abstract

The main concern of this contribution is whether liver microsomal cytochromes P-450 have an oligomeric structure and whether cooperativity of the oligomeric subunits has functional significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Greinert, H. Staerk, A. Stier, and A. Weiler, E-type delayed fluorescence depolarization, a technique to probe rotational motion in the microsecond range. J. Biochem. Biophvs. Methods. 1: 77 (1979).

    Article  CAS  Google Scholar 

  2. R. Greinert, S.A.E. Finch, and A. Stier, Cytochrome P-450 rotamers control mixed-function oxygenation in reconstituted membranes. Rotational diffusion studied by delayed fluorescence depolarization. Xenobiotica 12: 717 (1982a).

    Article  PubMed  CAS  Google Scholar 

  3. R. Greinert, S.A.E. Finch, and A. Stier, Conformation and rotational diffusion of cytochrome P-450 changed by substrate binding. Bioscience Report 2: 991 (1982b).

    Article  CAS  Google Scholar 

  4. C. Richter, K.H. Winterhalter, and R.J. Cherry, Rotational diffusion of cytochrome P-450 in rat liver microsomes, FEBS Lett. 102: 151 (1979).

    Article  PubMed  CAS  Google Scholar 

  5. S. Kawato, J. Gut, R.J. Cherry, K.H. Winterhalter, and C. Richter, Rotation of cytochrome P-450. I. Invetigation of protein-protein interaction of cytochrome P-450 in phospholipid vesicles and liver microsomes, J. Biol. Chem. 257: 7023 (1982).

    PubMed  CAS  Google Scholar 

  6. J. Gut, C. Richter, R.J. Cherry, K.H. Winterhalter, and S. Kawato, Rotation of cytochrome P-450. II. Specific interactions of cytochrome P-450 with NADPH-cytochrome P-450 reductase in phospholipid vesicles, J. Biol. Chem. 257: 7030 (1982).

    PubMed  CAS  Google Scholar 

  7. H. Garda, S.A.E. Finch, V. Krüger, J. Sidhu, and A. Stier, Microheterogeneity of rabbit liver cytochrome P-450 LM2: biochemical and structural differences of two subforms Eur. J. Biochem. submitted (1989).

    Google Scholar 

  8. S. Kawato and K. Kinosita, Time-dependent absorption anisotropy and rotational diffusion of proteins in membranes, Biophvs.J. 36: 277 (1981).

    Article  CAS  Google Scholar 

  9. A. Stier, S.A.E. Finch, R. Greinert, and H. Taniguchi, Membrane protein interactions in biotransformation, in: “Biochemistry, Biophysics and Induction”, L. Vereczky and K. Magyar, eds., Akademiai Kiado, Budapest (1985).

    Google Scholar 

  10. T.L. Poulos, B.C. Finzel, and A.J. Howard, High-resolution crystal structure of cytochrome P-450 CAM, J. Mol. Biol. 195: 687 (1987).

    Article  PubMed  CAS  Google Scholar 

  11. M. Sakaguchi, K. Mihara, and R. Sato, A short aminoterminal segment of microsomal cytochrome P-450 functions both as an insertion signal and as a stop-transfer sequence, EMBO J. 6: 2425 (1987).

    PubMed  CAS  Google Scholar 

  12. O. Gotoh and Y. Fuji-Kuriyama, Evolution, structure, and gene regulation of cytochrome P-450, in: “Basis and Mechanisms of Regulation of Cytochrom P-450”, Vol. 1, K. Ruckpaul and H. Rein, eds., Taylor & Francis, London (1989).

    Google Scholar 

  13. B.D. Hughes, B.A. Pailthorpe, L.T. White, and W.H. Sawyer, Extraction of membrane microvisosity from translational and rotational diffusion coefficients, Biophvs. J. 37: 673 (1982).

    CAS  Google Scholar 

  14. V.L. Tsuprun, K.N. Myasoedova, P. Berndt, O.N. Sograf E.V. Orlova, V.Ya. Chernyak, A.I. Archakov, and V.P. Skulachev, Quaternary structure of the liver microsomal cytochrome P-450, FEBS Lett. 205: 35 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. R. Peters and R.J. Cherry, Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers. Experimental test of the Saffman-Delbruck equations, Proc. Natl. Acad. Sci. USA 79: 4317 (1982).

    Article  PubMed  CAS  Google Scholar 

  16. D.R. Nelson and H.W. Strobel, Secondary structure prediction of 52 membrane-bound cytochromes P-450 shows a strong structural similarity to P-450 CAM, Biochemistry 28: 656 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. A. M. Lesk and C. Chothia, How different amino acid sequences determine similar protein structure: the structure and evolutionary dynamics of the globins, J. Mol. Biol. 136: 225 (1980).

    Article  PubMed  CAS  Google Scholar 

  18. C. Chothia and A.M. Lesk, Helix movements and the reconstruction of the haem pocket during the evolution of the cytochrome c family, J. Mol. Biol. 182: 151 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. D.E. Koshland Jr., G. Nemethy, and D. Filmer, Comparison of experimental binding date and theoretical models in proteins containing subunits, Biochemistry 5: 365 (1966).

    Article  PubMed  CAS  Google Scholar 

  20. I. Klotz, D.W. Darnall, and N.R. Langerman, Quaternary structure of proteins, in: “The Proteins”, Vol. 1, H. Neurath and R.L. Hill, eds, Academic Press, New york (1975).

    Google Scholar 

  21. P.P. Tamburini, S. Mac Farquhar, J.B. Schenkman, Evidence of binary complex formations between cytochrome P-450, cytochrome b5, and NADPH-cytochrome P-450 reductase of hepatic microsomes, Biochem. Biophvs. Res. Commun. 134: 519 (1986).

    Article  CAS  Google Scholar 

  22. R. Bernhardt, R. Kraft, A. Otto, and K. Ruckpaul, Electrostatic interactions between cytochrome P-450 LM2 and NADPH-cytochrome P-450 reductase, Biomed. Biochim. Acta 47: 581 (1988a).

    PubMed  CAS  Google Scholar 

  23. B. Bösterling and J.R. Trudell, Association of cytochrome b5 and cytochrome P-450 reductase with cytochrome P-450 in the membrane of reconstituted vesicles, J. Biol. Chem. 257: 4783 (1982).

    PubMed  Google Scholar 

  24. I.A. Jansson, P.M. Epstein, S. Bains, and J.B. Schenkman, Inverse relationship between cytochrome P-450 phosphorylation and complexation with cytochrome b5, Arch. Biochem. Biophvs. 259: 441 (1987).

    Article  CAS  Google Scholar 

  25. R. Müller, W.E. Schmidt, and A. Stier, The site of cyclic AMP-dependent protein kinase catalyzed phosphorylation of cytochrome P-450 LM2. FEBS Lett. 187: 21 (1985).

    Article  PubMed  Google Scholar 

  26. S.D. Black and M.J. Coon, Studies on the identity of the heme-binding cysteinyl residue in rabbit liver microsomal cytochrome P-450 isozyme 2, Biochem. Biophvs. Res. Commun. 128: 82 (1985).

    Article  CAS  Google Scholar 

  27. C. De Lemos-Chiarandini, A.B. Frey, D.D. Sabatini and G. Kreibich, Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies, J. Cell Biol. 104: 209 (1987).

    Article  PubMed  Google Scholar 

  28. C. Chothia, Principles that determine the structure of proteins, Annu. Rev. Biochem. 53:, 537 (1984).

    Article  PubMed  CAS  Google Scholar 

  29. E. Schulz, A critical evaluation of methods for prediction of protein secondary structures, Annu. Rev. Biophvs. Biophvs. Chem. 17: 1 (1988).

    Article  CAS  Google Scholar 

  30. R. Bernhardt, N.T. Ngoc Dao, H. Stiel, W. Schwarze, J. Friedrich, G.-R. Jänig, and K. Ruckpaul, Modification of cytochrome P-450 with fluorescein isothiocyanate, Biochim. Biophvs. Acta 745: 140 (1983).

    Article  CAS  Google Scholar 

  31. R. Bernhardt, R. Kraft, and K. Ruckpaul, A simple determination of the sidedness of the NH2-terminus in the membrane bound cytochrome P-450 LM2, Biochem. Int. 17: 1143 (1988b).

    PubMed  CAS  Google Scholar 

  32. Matsuura, Y. Fujii-Kuriyama, and Y. Tashiro, Quantitative immunoelectron microscopic analyses of the distribution of cytochrome P-450 molecules on rat liver microsomes, J. Cell Sci. 36: 413 (1979).

    PubMed  CAS  Google Scholar 

  33. G. Vergères, K.H. Winterhalter, and C. Richter, Identification of the membrane anchor of microsomal rat liver cytochrome P-450, Biochemistry 28: 3650 (1989).

    Article  PubMed  Google Scholar 

  34. P.A. Kiselev, H. Garda, S.A.E. Finch, A. Stier, N.A. Gurinovich, S.I. Khatyleva, and A.A. Akhrem, Rotational diffusion of cytochrome P-450 in the model membrane of different phospholipid-composition, Dokladv Akademii Nauk SSR 307: 473 (1989).

    CAS  Google Scholar 

  35. J. Seelig, P.M. Macdonald, and P.G. Scherer, Phospholipid head groups as sensors of electric charge in membranes, Biochemistry 26: 7535 (1987).

    Article  PubMed  CAS  Google Scholar 

  36. B.H. Honig, W.L. Hubbell, and R.F. Flewelling, Electrostatic interactions in membranes and proteins, Ann. Rev. Biophvs. Biophvs. Chem. 15: 163 (1986).

    Article  CAS  Google Scholar 

  37. S. McLaughlin, The electrostatic properties of membranes, Annu. Rev. Biophvs. Biophvs. Chem. 18: 113 (1989).

    Article  CAS  Google Scholar 

  38. T. Y. Tsong and R.D. Astumian, Electroconformational coupling and membrane protein function, Proar. Biophvs. Mol. Biol. 50: 1 (1987).

    Article  CAS  Google Scholar 

  39. A. Stier, S.A.E. Finch, R. Greinert, R. Müller, and H. Taniguchi, Structure of endoplasmic reticulum membrane and regulation of drug metabolism, in: “Pharmacological, Morphological and Physiological Aspects of Liver Aging”, C.F.A. van Bezooijen, ed., EURAGE, Rijswijk (1984).

    Google Scholar 

  40. W.L. Dean and R.D. Gray, Relationship between state of aggregation and catalytic activity for cytochrome P-450 LM2 and NADPH-cytochrome P-450 reductase, J. Biol. Chem. 257: 14679 (1982).

    PubMed  CAS  Google Scholar 

  41. S.L. Wagner, W.L. Dean, and R.D. Gray, Zwitterionic detergent mediated interaction of purified cytochrome P-450 LM4 from 5,6-benzoflavone-treated rabbits with NADPH-cytochrome P-450 reductase, Biochemistry 26: 2343 (1987).

    Article  PubMed  CAS  Google Scholar 

  42. A. Stier, H. Garda, P. Kisselev, V. Krueger, S.A.E. Finch, and A.A. Akhrem, Membrane protein interaction in biotransformation, in: “Cytochrome P-450 Biochemistry and Biophysics”, I. Schuster, ed., Taylor and Francis, London (1989).

    Google Scholar 

  43. I.P. Kanaeva, E.D. Skotselyas, I.F. Turkina, E.V. Petrochenko, D.R. Davydov, S.R. Kondrashin, Ch.S. Dzuzenova, G.I. Bachmanova, and A.I. Archakov, Reduction and catalytic properties of cytochrome P-450 in reconstituted system containing monomeric carriers, Biochem. Biophvs. Res.Comm. 147: 1295 (1987).

    Article  CAS  Google Scholar 

  44. P. Hildebrandt, H. Garda, A. Stier, G.I. Bachmanova, I.P. Kanaeva, and A.I. Archakov, Protein-protein interactions in microsomal P-450 isozyme LM2 and their effect on substrate binding, Eur. J. Biochem.. in press. (1989).

    Google Scholar 

  45. J. Gut, C. Richter, R.J. Cherry, K.H. Winterhalter, and S. Kawato, Rotation of cytochrome P-450. Complex formation of cytochrome P-450 with NADPH-cytochrome P-450 reductase in liposomes demonstrated by combining protein rotation with antibody-induced crosslinking, J. Biol. Chem. 258: 8588 (1983).

    PubMed  CAS  Google Scholar 

  46. J. Monod, J. Wyman, and J.-P. Changeaux, On the nature of allosteric transitions: A plausible model, J. Mol. Biol. 12: 88 (1965).

    Article  PubMed  CAS  Google Scholar 

  47. M. Eigen, New looks and outlooks on physical enzymology, Quart. Rev. Biophvs. 1: 3 (1968).

    Article  CAS  Google Scholar 

  48. J. Ricard, Organized polymeric enzyme systems: Catalytic properties, in: “Organized Multienzyme Systems: Catalytic Properties”, R. Welch, ed., Academic Press, Orlando (1985).

    Google Scholar 

  49. A. Levitzki and D.E. Koshland Jr., The role of negative cooperativity and half-of-the-sites reactivity in enzyme regulation, Curr. Top. Cell Reaul. 10: 1 (1976).

    CAS  Google Scholar 

  50. J.C. Gerhart and H.K. Schachman, Allosteric interactions in aspartate transcarbamylase. II. Evidence for different conformational states of the protein in the presence and absence of specific ligands, Biochemistry 7: 538 (1968).

    Article  PubMed  CAS  Google Scholar 

  51. K. Netter, Inhibition of oxidative drug metabolism in microsomes,, in: “Cytochrome P-450 Monooxygenase System”, J.B. Schenkman and D. Kupfer, eds., Pergamon Press, Oxford, New York, Toronto, Paris, Frankfurt (1982).

    Google Scholar 

  52. D.L. Cinti, Agents activating the liver microsomal mixed function oxidase system, in: “Hepatic Cytochrome P-450 Monooxygenase System”, Schenckman, J.B. and D. Kupfer, eds., Pergamon Press, Oxford, New York, Toronto, Paris, Frankfurt (1982).

    Google Scholar 

  53. J.M. Lasker, M.-T. Huang, and A.H. Conney, In vitro and in vivo activation of oxidative drug metabolism by flavonoids, J. Pharmacol. EXP. Ther. 229: 162 (1984).

    PubMed  CAS  Google Scholar 

  54. E.F. Johnson, G.E. Schwab, and L.E. Vickery, Positive effectors of the binding of an active site-directed amino steroid to rabbit cytochrome P-450 3c, J. Biol. Chem. 263: 17672 (1988).

    PubMed  CAS  Google Scholar 

  55. G.E. Schwab, J.L. Raucy, and E.F. Johnson, Modulation of rabbit and human hepatic cytochrome P-450 catalyzed steroid hydroxylations by alpha-naphthoflavone, Mol. Pharmacol. 33: 493 (1988).

    PubMed  CAS  Google Scholar 

  56. M. Ingelman-Sundberg, I. Johansson, and A. Hansson, Catalytic properties of the liver microsomal hydroxylase system in reconstituted phospholipid vesicles, Acta biol. med. germ. 38: 379 (1979)

    PubMed  CAS  Google Scholar 

  57. W.M. Atkins and S.G. Sligar, Deuterium isotope effects in norcamphor metabolism by cytochrome P-450 CAM kinetic evidence for the two-electron reduction of a high-valent iron-oxo-intermediate, Biochemistry 27: 1610 (1988).

    Article  PubMed  CAS  Google Scholar 

  58. H. Sies and B. Brauser, Interaction of mixed function oxidase with its substrates and associated redox transitions of cytochrome P-450 and Pyridine nucleotides in perfused rat liver, Eur. J. Biochem. 15: 531 (1970).

    Article  PubMed  CAS  Google Scholar 

  59. T. Iyanagi, T. Suzaki, and S. Kobayashi, Oxidation-reduction states of Pyridine nucleotide and cytochrome P-450 during mixed-function oxidation in perfused rat liver, J. Biol. Chem. 256: 12933 (1981).

    PubMed  CAS  Google Scholar 

  60. H.H. Ruf, Reduction kinetics of microsomal cytochrome P-450. A reexamination, in: “Biochemistry, Biophysics and Regulation of Cytochrome P-450”, J.A. Gustafsson, H.J. Carlstedt-Duke, A. Mode and J. Rafter, eds., Elsevier/North Holland Biomedical Press, Amsterdam, New York, Oxford (1980).

    Google Scholar 

  61. W.L. Backes, S.G. Sligar, and J.B. Schenkman, Cytochrome P-450 reduction exhibits burst kinetics, Biochem. Biophvs. Res. Comm. 97: 860 (1980).

    Article  CAS  Google Scholar 

  62. J. Blanck, G. Smettan, O. Ristau, M. Ingelman-Sundberg, and K. Ruckpaul, Mechanism of rate control of the NADPH-dependent reduction of cytochrome P-450 by lipids in reconstituted phospholipids, Eur. J. Biochem. 144: 509 (1984).

    Article  PubMed  CAS  Google Scholar 

  63. H. Taniguchi, Y. Imai, T. Iyanagi, and R. Sato, Interaction between NADPH-cytochrome P-450 reductase and cytochrome P-450 in the membrane of phosphatidylcholine vesicles, Biochim. Biophvs. Acta 550: 341 (1979).

    Article  CAS  Google Scholar 

  64. J.A. Peterson, R.R. Ebel, D.H. O’Keefe, I. Matsubara, and R.W. Estabrook, Temperature dependence of cytochrome P-450 reduction, J. Biol. Chem. 251: 4010 (1976).

    PubMed  CAS  Google Scholar 

  65. D.R. Davydov, A.V. Karyakin, B. Binas, B.I. Kurganov, and A.I. Archakov, Kinetic studies on reduction of cytochromes P-450 and b5 by dithionite, Eur. J. Biochem. 150: 155 (1985).

    Article  PubMed  CAS  Google Scholar 

  66. T.M. Lohman and W. Bujalowski, Negative cooperativity within individual tetramers of Escherichia coli single strand binding protein is responsible for the transition between the (SSB)35 and (SSB)56 DNA binding modes, Biochemistry 27: 2260 (1988).

    Article  PubMed  CAS  Google Scholar 

  67. M. Ingelman-Sundberg, Cytochrome P-450 organization and membrane interaction,, in: “Cytochrome P-450”, P.R. Ortiz de Montellano, ed., Plenum Press, New York (1986).

    Google Scholar 

  68. C.-C. Wang, I.D. Goldfine, Y. Fujita-Yamaguchi, H.G. Gattmer. D. Brandenburg, and P. De Meyts, Negative and positive site-site interactions, and their modulation by pH, insulin analogs, and monoclonal antibodies, are preserved in the purified insulin receptor, Proc. Natl. Acad. Sci. USA 85: 8400 (1988).

    Article  PubMed  CAS  Google Scholar 

  69. J.-L. Gu, I.D. Goldfine, J.R. Forsayeth, and P. De Meyts, Reversal of insulin-induced negative cooperativity by monoclonal antibodies that stabilize the slowly dissociating (“K-super”) state of the insulin receptor, Biochem. Biophvs. Res. Comm. 150: 694 (1988).

    Article  CAS  Google Scholar 

  70. S. Gammeltoft, Insulin receptors: Binding, kinetics and structure-function relationship of insulin, Physiol. Rev. 64: 1321 (1984).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Stier, A., Kruger, V., Eisbein, T., Finch, S.A.E. (1991). Membrane Topology of Cytochromes P-450: Oligomers and Cooperativity. In: Arinç, E., Schenkman, J.B., Hodgson, E. (eds) Molecular Aspects of Monooxygenases and Bioactivation of Toxic Compounds. NATO ASI Series Advanced Science Institutes Series, vol 202. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7284-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7284-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7286-8

  • Online ISBN: 978-1-4684-7284-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics