Membrane Topology of Cytochromes P-450: Oligomers and Cooperativity

  • A. Stier
  • V. Kruger
  • T. Eisbein
  • S. A. E. Finch
Part of the NATO ASI Series Advanced Science Institutes Series book series (NSSA, volume 202)


The main concern of this contribution is whether liver microsomal cytochromes P-450 have an oligomeric structure and whether cooperativity of the oligomeric subunits has functional significance.


Rotational Diffusion Rotational Correlation Time Oligomeric Structure Membrane Topology Positive Cooperativity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Greinert, H. Staerk, A. Stier, and A. Weiler, E-type delayed fluorescence depolarization, a technique to probe rotational motion in the microsecond range. J. Biochem. Biophvs. Methods. 1: 77 (1979).CrossRefGoogle Scholar
  2. 2.
    R. Greinert, S.A.E. Finch, and A. Stier, Cytochrome P-450 rotamers control mixed-function oxygenation in reconstituted membranes. Rotational diffusion studied by delayed fluorescence depolarization. Xenobiotica 12: 717 (1982a).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Greinert, S.A.E. Finch, and A. Stier, Conformation and rotational diffusion of cytochrome P-450 changed by substrate binding. Bioscience Report 2: 991 (1982b).CrossRefGoogle Scholar
  4. 4.
    C. Richter, K.H. Winterhalter, and R.J. Cherry, Rotational diffusion of cytochrome P-450 in rat liver microsomes, FEBS Lett. 102: 151 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Kawato, J. Gut, R.J. Cherry, K.H. Winterhalter, and C. Richter, Rotation of cytochrome P-450. I. Invetigation of protein-protein interaction of cytochrome P-450 in phospholipid vesicles and liver microsomes, J. Biol. Chem. 257: 7023 (1982).PubMedGoogle Scholar
  6. 6.
    J. Gut, C. Richter, R.J. Cherry, K.H. Winterhalter, and S. Kawato, Rotation of cytochrome P-450. II. Specific interactions of cytochrome P-450 with NADPH-cytochrome P-450 reductase in phospholipid vesicles, J. Biol. Chem. 257: 7030 (1982).PubMedGoogle Scholar
  7. 7.
    H. Garda, S.A.E. Finch, V. Krüger, J. Sidhu, and A. Stier, Microheterogeneity of rabbit liver cytochrome P-450 LM2: biochemical and structural differences of two subforms Eur. J. Biochem. submitted (1989).Google Scholar
  8. 8.
    S. Kawato and K. Kinosita, Time-dependent absorption anisotropy and rotational diffusion of proteins in membranes, Biophvs.J. 36: 277 (1981).CrossRefGoogle Scholar
  9. 9.
    A. Stier, S.A.E. Finch, R. Greinert, and H. Taniguchi, Membrane protein interactions in biotransformation, in: “Biochemistry, Biophysics and Induction”, L. Vereczky and K. Magyar, eds., Akademiai Kiado, Budapest (1985).Google Scholar
  10. 10.
    T.L. Poulos, B.C. Finzel, and A.J. Howard, High-resolution crystal structure of cytochrome P-450 CAM, J. Mol. Biol. 195: 687 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Sakaguchi, K. Mihara, and R. Sato, A short aminoterminal segment of microsomal cytochrome P-450 functions both as an insertion signal and as a stop-transfer sequence, EMBO J. 6: 2425 (1987).PubMedGoogle Scholar
  12. 12.
    O. Gotoh and Y. Fuji-Kuriyama, Evolution, structure, and gene regulation of cytochrome P-450, in: “Basis and Mechanisms of Regulation of Cytochrom P-450”, Vol. 1, K. Ruckpaul and H. Rein, eds., Taylor & Francis, London (1989).Google Scholar
  13. 13.
    B.D. Hughes, B.A. Pailthorpe, L.T. White, and W.H. Sawyer, Extraction of membrane microvisosity from translational and rotational diffusion coefficients, Biophvs. J. 37: 673 (1982).Google Scholar
  14. 14.
    V.L. Tsuprun, K.N. Myasoedova, P. Berndt, O.N. Sograf E.V. Orlova, V.Ya. Chernyak, A.I. Archakov, and V.P. Skulachev, Quaternary structure of the liver microsomal cytochrome P-450, FEBS Lett. 205: 35 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Peters and R.J. Cherry, Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers. Experimental test of the Saffman-Delbruck equations, Proc. Natl. Acad. Sci. USA 79: 4317 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    D.R. Nelson and H.W. Strobel, Secondary structure prediction of 52 membrane-bound cytochromes P-450 shows a strong structural similarity to P-450 CAM, Biochemistry 28: 656 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    A. M. Lesk and C. Chothia, How different amino acid sequences determine similar protein structure: the structure and evolutionary dynamics of the globins, J. Mol. Biol. 136: 225 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    C. Chothia and A.M. Lesk, Helix movements and the reconstruction of the haem pocket during the evolution of the cytochrome c family, J. Mol. Biol. 182: 151 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    D.E. Koshland Jr., G. Nemethy, and D. Filmer, Comparison of experimental binding date and theoretical models in proteins containing subunits, Biochemistry 5: 365 (1966).PubMedCrossRefGoogle Scholar
  20. 20.
    I. Klotz, D.W. Darnall, and N.R. Langerman, Quaternary structure of proteins, in: “The Proteins”, Vol. 1, H. Neurath and R.L. Hill, eds, Academic Press, New york (1975).Google Scholar
  21. 21.
    P.P. Tamburini, S. Mac Farquhar, J.B. Schenkman, Evidence of binary complex formations between cytochrome P-450, cytochrome b5, and NADPH-cytochrome P-450 reductase of hepatic microsomes, Biochem. Biophvs. Res. Commun. 134: 519 (1986).CrossRefGoogle Scholar
  22. 22.
    R. Bernhardt, R. Kraft, A. Otto, and K. Ruckpaul, Electrostatic interactions between cytochrome P-450 LM2 and NADPH-cytochrome P-450 reductase, Biomed. Biochim. Acta 47: 581 (1988a).PubMedGoogle Scholar
  23. 23.
    B. Bösterling and J.R. Trudell, Association of cytochrome b5 and cytochrome P-450 reductase with cytochrome P-450 in the membrane of reconstituted vesicles, J. Biol. Chem. 257: 4783 (1982).PubMedGoogle Scholar
  24. 24.
    I.A. Jansson, P.M. Epstein, S. Bains, and J.B. Schenkman, Inverse relationship between cytochrome P-450 phosphorylation and complexation with cytochrome b5, Arch. Biochem. Biophvs. 259: 441 (1987).CrossRefGoogle Scholar
  25. 25.
    R. Müller, W.E. Schmidt, and A. Stier, The site of cyclic AMP-dependent protein kinase catalyzed phosphorylation of cytochrome P-450 LM2. FEBS Lett. 187: 21 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    S.D. Black and M.J. Coon, Studies on the identity of the heme-binding cysteinyl residue in rabbit liver microsomal cytochrome P-450 isozyme 2, Biochem. Biophvs. Res. Commun. 128: 82 (1985).CrossRefGoogle Scholar
  27. 27.
    C. De Lemos-Chiarandini, A.B. Frey, D.D. Sabatini and G. Kreibich, Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies, J. Cell Biol. 104: 209 (1987).PubMedCrossRefGoogle Scholar
  28. 28.
    C. Chothia, Principles that determine the structure of proteins, Annu. Rev. Biochem. 53:, 537 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    E. Schulz, A critical evaluation of methods for prediction of protein secondary structures, Annu. Rev. Biophvs. Biophvs. Chem. 17: 1 (1988).CrossRefGoogle Scholar
  30. 30.
    R. Bernhardt, N.T. Ngoc Dao, H. Stiel, W. Schwarze, J. Friedrich, G.-R. Jänig, and K. Ruckpaul, Modification of cytochrome P-450 with fluorescein isothiocyanate, Biochim. Biophvs. Acta 745: 140 (1983).CrossRefGoogle Scholar
  31. 31.
    R. Bernhardt, R. Kraft, and K. Ruckpaul, A simple determination of the sidedness of the NH2-terminus in the membrane bound cytochrome P-450 LM2, Biochem. Int. 17: 1143 (1988b).PubMedGoogle Scholar
  32. 32.
    Matsuura, Y. Fujii-Kuriyama, and Y. Tashiro, Quantitative immunoelectron microscopic analyses of the distribution of cytochrome P-450 molecules on rat liver microsomes, J. Cell Sci. 36: 413 (1979).PubMedGoogle Scholar
  33. 33.
    G. Vergères, K.H. Winterhalter, and C. Richter, Identification of the membrane anchor of microsomal rat liver cytochrome P-450, Biochemistry 28: 3650 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    P.A. Kiselev, H. Garda, S.A.E. Finch, A. Stier, N.A. Gurinovich, S.I. Khatyleva, and A.A. Akhrem, Rotational diffusion of cytochrome P-450 in the model membrane of different phospholipid-composition, Dokladv Akademii Nauk SSR 307: 473 (1989).Google Scholar
  35. 35.
    J. Seelig, P.M. Macdonald, and P.G. Scherer, Phospholipid head groups as sensors of electric charge in membranes, Biochemistry 26: 7535 (1987).PubMedCrossRefGoogle Scholar
  36. 36.
    B.H. Honig, W.L. Hubbell, and R.F. Flewelling, Electrostatic interactions in membranes and proteins, Ann. Rev. Biophvs. Biophvs. Chem. 15: 163 (1986).CrossRefGoogle Scholar
  37. 37.
    S. McLaughlin, The electrostatic properties of membranes, Annu. Rev. Biophvs. Biophvs. Chem. 18: 113 (1989).CrossRefGoogle Scholar
  38. 38.
    T. Y. Tsong and R.D. Astumian, Electroconformational coupling and membrane protein function, Proar. Biophvs. Mol. Biol. 50: 1 (1987).CrossRefGoogle Scholar
  39. 39.
    A. Stier, S.A.E. Finch, R. Greinert, R. Müller, and H. Taniguchi, Structure of endoplasmic reticulum membrane and regulation of drug metabolism, in: “Pharmacological, Morphological and Physiological Aspects of Liver Aging”, C.F.A. van Bezooijen, ed., EURAGE, Rijswijk (1984).Google Scholar
  40. 40.
    W.L. Dean and R.D. Gray, Relationship between state of aggregation and catalytic activity for cytochrome P-450 LM2 and NADPH-cytochrome P-450 reductase, J. Biol. Chem. 257: 14679 (1982).PubMedGoogle Scholar
  41. 41.
    S.L. Wagner, W.L. Dean, and R.D. Gray, Zwitterionic detergent mediated interaction of purified cytochrome P-450 LM4 from 5,6-benzoflavone-treated rabbits with NADPH-cytochrome P-450 reductase, Biochemistry 26: 2343 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    A. Stier, H. Garda, P. Kisselev, V. Krueger, S.A.E. Finch, and A.A. Akhrem, Membrane protein interaction in biotransformation, in: “Cytochrome P-450 Biochemistry and Biophysics”, I. Schuster, ed., Taylor and Francis, London (1989).Google Scholar
  43. 43.
    I.P. Kanaeva, E.D. Skotselyas, I.F. Turkina, E.V. Petrochenko, D.R. Davydov, S.R. Kondrashin, Ch.S. Dzuzenova, G.I. Bachmanova, and A.I. Archakov, Reduction and catalytic properties of cytochrome P-450 in reconstituted system containing monomeric carriers, Biochem. Biophvs. Res.Comm. 147: 1295 (1987).CrossRefGoogle Scholar
  44. 44.
    P. Hildebrandt, H. Garda, A. Stier, G.I. Bachmanova, I.P. Kanaeva, and A.I. Archakov, Protein-protein interactions in microsomal P-450 isozyme LM2 and their effect on substrate binding, Eur. J. Biochem.. in press. (1989).Google Scholar
  45. 45.
    J. Gut, C. Richter, R.J. Cherry, K.H. Winterhalter, and S. Kawato, Rotation of cytochrome P-450. Complex formation of cytochrome P-450 with NADPH-cytochrome P-450 reductase in liposomes demonstrated by combining protein rotation with antibody-induced crosslinking, J. Biol. Chem. 258: 8588 (1983).PubMedGoogle Scholar
  46. 46.
    J. Monod, J. Wyman, and J.-P. Changeaux, On the nature of allosteric transitions: A plausible model, J. Mol. Biol. 12: 88 (1965).PubMedCrossRefGoogle Scholar
  47. 47.
    M. Eigen, New looks and outlooks on physical enzymology, Quart. Rev. Biophvs. 1: 3 (1968).CrossRefGoogle Scholar
  48. 48.
    J. Ricard, Organized polymeric enzyme systems: Catalytic properties, in: “Organized Multienzyme Systems: Catalytic Properties”, R. Welch, ed., Academic Press, Orlando (1985).Google Scholar
  49. 49.
    A. Levitzki and D.E. Koshland Jr., The role of negative cooperativity and half-of-the-sites reactivity in enzyme regulation, Curr. Top. Cell Reaul. 10: 1 (1976).Google Scholar
  50. 50.
    J.C. Gerhart and H.K. Schachman, Allosteric interactions in aspartate transcarbamylase. II. Evidence for different conformational states of the protein in the presence and absence of specific ligands, Biochemistry 7: 538 (1968).PubMedCrossRefGoogle Scholar
  51. 51.
    K. Netter, Inhibition of oxidative drug metabolism in microsomes,, in: “Cytochrome P-450 Monooxygenase System”, J.B. Schenkman and D. Kupfer, eds., Pergamon Press, Oxford, New York, Toronto, Paris, Frankfurt (1982).Google Scholar
  52. 52.
    D.L. Cinti, Agents activating the liver microsomal mixed function oxidase system, in: “Hepatic Cytochrome P-450 Monooxygenase System”, Schenckman, J.B. and D. Kupfer, eds., Pergamon Press, Oxford, New York, Toronto, Paris, Frankfurt (1982).Google Scholar
  53. 53.
    J.M. Lasker, M.-T. Huang, and A.H. Conney, In vitro and in vivo activation of oxidative drug metabolism by flavonoids, J. Pharmacol. EXP. Ther. 229: 162 (1984).PubMedGoogle Scholar
  54. 54.
    E.F. Johnson, G.E. Schwab, and L.E. Vickery, Positive effectors of the binding of an active site-directed amino steroid to rabbit cytochrome P-450 3c, J. Biol. Chem. 263: 17672 (1988).PubMedGoogle Scholar
  55. 55.
    G.E. Schwab, J.L. Raucy, and E.F. Johnson, Modulation of rabbit and human hepatic cytochrome P-450 catalyzed steroid hydroxylations by alpha-naphthoflavone, Mol. Pharmacol. 33: 493 (1988).PubMedGoogle Scholar
  56. 56.
    M. Ingelman-Sundberg, I. Johansson, and A. Hansson, Catalytic properties of the liver microsomal hydroxylase system in reconstituted phospholipid vesicles, Acta biol. med. germ. 38: 379 (1979)PubMedGoogle Scholar
  57. 57.
    W.M. Atkins and S.G. Sligar, Deuterium isotope effects in norcamphor metabolism by cytochrome P-450 CAM kinetic evidence for the two-electron reduction of a high-valent iron-oxo-intermediate, Biochemistry 27: 1610 (1988).PubMedCrossRefGoogle Scholar
  58. 58.
    H. Sies and B. Brauser, Interaction of mixed function oxidase with its substrates and associated redox transitions of cytochrome P-450 and Pyridine nucleotides in perfused rat liver, Eur. J. Biochem. 15: 531 (1970).PubMedCrossRefGoogle Scholar
  59. 59.
    T. Iyanagi, T. Suzaki, and S. Kobayashi, Oxidation-reduction states of Pyridine nucleotide and cytochrome P-450 during mixed-function oxidation in perfused rat liver, J. Biol. Chem. 256: 12933 (1981).PubMedGoogle Scholar
  60. 60.
    H.H. Ruf, Reduction kinetics of microsomal cytochrome P-450. A reexamination, in: “Biochemistry, Biophysics and Regulation of Cytochrome P-450”, J.A. Gustafsson, H.J. Carlstedt-Duke, A. Mode and J. Rafter, eds., Elsevier/North Holland Biomedical Press, Amsterdam, New York, Oxford (1980).Google Scholar
  61. 61.
    W.L. Backes, S.G. Sligar, and J.B. Schenkman, Cytochrome P-450 reduction exhibits burst kinetics, Biochem. Biophvs. Res. Comm. 97: 860 (1980).CrossRefGoogle Scholar
  62. 62.
    J. Blanck, G. Smettan, O. Ristau, M. Ingelman-Sundberg, and K. Ruckpaul, Mechanism of rate control of the NADPH-dependent reduction of cytochrome P-450 by lipids in reconstituted phospholipids, Eur. J. Biochem. 144: 509 (1984).PubMedCrossRefGoogle Scholar
  63. 63.
    H. Taniguchi, Y. Imai, T. Iyanagi, and R. Sato, Interaction between NADPH-cytochrome P-450 reductase and cytochrome P-450 in the membrane of phosphatidylcholine vesicles, Biochim. Biophvs. Acta 550: 341 (1979).CrossRefGoogle Scholar
  64. 64.
    J.A. Peterson, R.R. Ebel, D.H. O’Keefe, I. Matsubara, and R.W. Estabrook, Temperature dependence of cytochrome P-450 reduction, J. Biol. Chem. 251: 4010 (1976).PubMedGoogle Scholar
  65. 65.
    D.R. Davydov, A.V. Karyakin, B. Binas, B.I. Kurganov, and A.I. Archakov, Kinetic studies on reduction of cytochromes P-450 and b5 by dithionite, Eur. J. Biochem. 150: 155 (1985).PubMedCrossRefGoogle Scholar
  66. 66.
    T.M. Lohman and W. Bujalowski, Negative cooperativity within individual tetramers of Escherichia coli single strand binding protein is responsible for the transition between the (SSB)35 and (SSB)56 DNA binding modes, Biochemistry 27: 2260 (1988).PubMedCrossRefGoogle Scholar
  67. 67.
    M. Ingelman-Sundberg, Cytochrome P-450 organization and membrane interaction,, in: “Cytochrome P-450”, P.R. Ortiz de Montellano, ed., Plenum Press, New York (1986).Google Scholar
  68. 68.
    C.-C. Wang, I.D. Goldfine, Y. Fujita-Yamaguchi, H.G. Gattmer. D. Brandenburg, and P. De Meyts, Negative and positive site-site interactions, and their modulation by pH, insulin analogs, and monoclonal antibodies, are preserved in the purified insulin receptor, Proc. Natl. Acad. Sci. USA 85: 8400 (1988).PubMedCrossRefGoogle Scholar
  69. 69.
    J.-L. Gu, I.D. Goldfine, J.R. Forsayeth, and P. De Meyts, Reversal of insulin-induced negative cooperativity by monoclonal antibodies that stabilize the slowly dissociating (“K-super”) state of the insulin receptor, Biochem. Biophvs. Res. Comm. 150: 694 (1988).CrossRefGoogle Scholar
  70. 70.
    S. Gammeltoft, Insulin receptors: Binding, kinetics and structure-function relationship of insulin, Physiol. Rev. 64: 1321 (1984).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. Stier
    • 1
  • V. Kruger
    • 1
  • T. Eisbein
    • 1
  • S. A. E. Finch
    • 1
  1. 1.Max-Planck-Institut für biophysikalische ChemieAbteilung SpektroskopieGöttingenGermany

Personalised recommendations