Membrane Topology of Cytochromes P-450: Elements and Measurement by Spectroscopic Techniques

  • A. Stier
  • V. Krüger
  • T. Eisbein
  • S. A. E. Finch
Part of the NATO ASI Series Advanced Science Institutes Series book series (NSSA, volume 202)


The main concern of these lectures is: Do liver microsomal cytochromes P-450 have an oligomeric structure and is cooperativity involved in their function? Elements of topology of membrane proteins and the spectroscopic techniques used to investigate this toplogy are described. Oligomeric structure is an important element of membrane topology and information on it can be obtained from measurements of rotational diffusion of the proteins. Emphasis is therefore laid on photoselection techniques (time-dependent polarized delayed fluorescence and phosphorescence and time-dependent absorption dichroism).


Rotational Diffusion Transition Moment Rotational Correlation Time Membrane Topology Anisotropy Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.L. Jennings, Topography of membrane proteins, Annu. Rev. Biochem. 58: 999 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    K.U. Linderstrøm-Lang and J.A. Schellrnan, Protein structure and enzyme activity, in “The Enzymes”, P.D. Boyer, H. Lardy, and K. Myrbäck, eds., Academic Press, New York (1959).Google Scholar
  3. 3.
    A. Stier and S.A.E. Finch, Rotational diffusion of homo-and heterooligomers of cytochrome P-450: the functional significance of cooperativity and the membrane structure, in: “Frontiers in Biotransformation”, Vol. 1, K. Ruckpaul and H. Rein, eds., Taylor & Francis, London, submitted.Google Scholar
  4. 4.
    J.R. Abney and J.C. Owicki, Theories of protein-lipid and protein-protein interactions in membranes, in: “Progress in Protein-Lipid Interactions”, Vol. 1, A. Watts and J.J.H.H.M. De Pont, eds., Elsevier Science Publishers, Amsterdam (1985).Google Scholar
  5. 5.
    I. Klotz, D.W. Darnall, and N.R. Langerman, Quaternary structure of proteins, in: “The Proteins”, Vol. 1, H. Neurath and R.L. Hill, eds, Academic Press, New York (1975).Google Scholar
  6. 6.
    D.E. Koshland Jr., G. Nemethy, and D. Filmer, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry 5: 365 (1966).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Marsh, Molecular mobility in membranes, in: “Physical Properties of Biological Membranes and Their Functional Implications”, C. Hidalgo, ed., Plenum Publishing Company, New York (1988).Google Scholar
  8. 8.
    H. Sandermann Jr., Cooperativity of lipid-protein interactions, in: “Progress in Protein-Lipid Interactions” Vol. 2, A. Watts and J.J.H.H.M. De Pont, eds., Elsevier Science Publishers, Amsterdam (1986).Google Scholar
  9. 9.
    H. Frauenfelder, F. Parak, and R.D. Young, Conformational substates in proteins, Annu. Rev. Biophys. Biophys. Chem. 17: 451 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    C. Jung, F. Marlow, O. Ristau, S. Falsett. I.C. Gunsalus, and H. Frauenfelder, Accessibility and dynamics of the active site in bacterial cytochrome P-450, in: “Cytochrome P-450: Biochemistry and Biophysics”, I. Schuster, ed. Taylor & Francis, London (1989).Google Scholar
  11. 11.
    J. Monod, J. Wyman, and J.-P. Changeaux, On the nature of allosteric transitions: A plausible model, J. Mol. Biol. 12: 88 (1965).PubMedCrossRefGoogle Scholar
  12. 12.
    G.R. Welch (ed.) “Organized Multienzyme Systems: Catalytic Properties”, Academic Press Inc., Orlando (1985).Google Scholar
  13. 13.
    E. Sackmann and H. Träuble, Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. II. Analysis of the electron spin resonance spectra of steroid labels incorporated into lipid membranes, J. Am. Chem. Soc. 94: 4491 (1972).Google Scholar
  14. 14.
    H. Träuble and E. Sackmann, Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid phase transition, J. Am. Chem. Soc. 94: 4499 (1972).PubMedCrossRefGoogle Scholar
  15. 15.
    C.J. Scandella, P. Devaux, and H.M. McConnell, Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum. Proc. Natl. Acad. Sci USA 69: 2056 (1972).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Edidin, Rotational and translational diffusion in membranes, Annu. Rev. Biophys. Bioeng. 3: 179 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    M.D. Hollenberg, Examples of homospecific and heterospecific receptor regulation, Trends Pharmacol. Sci. 6: 242 (1985).CrossRefGoogle Scholar
  18. 18.
    J. Schlessinger, Signal transduction by allosteric receptor oligomerization, Trends Biochem. Sci. 13: 443 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    J.-P. Changeux, A. Devillers-Thiery, and P. Chemouilli, Acetylcholine receptor: An allosteric protein, Science 225: 1355 (1984).CrossRefGoogle Scholar
  20. 20.
    C.R. Hackenbrock, B. Chazotte, and S.S. Gupte, The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport, J. Bioenerg. Biomembr. 18: 331 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    J.W. DePierre and L. Ernster, Enzyme topology of intracellular membranes, Ann. Rev. Biochem. 46: 201 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Ingelman-Sundberg, Cytochrome P-450 organization and membrane interaction,, in: “Cytochrome P-450”, P.R. Ortiz de Montellano, ed., Plenum Press, New York (1986).Google Scholar
  23. 23.
    E. Schulz, A critical evaluation of methods for prediction of protein secondary structures, Annu. Rev. Biophvs. Biophvs. Chem. 17: 1 (1988).CrossRefGoogle Scholar
  24. 24.
    B.A. Wallace, M. Cascio, and D.L. Mielke, Evaluation of methods for the prediction of membrane protein secondary structures, Proc. Natl. Acad. Sci. USA 83: 9423 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    G.E. Tarr, S.D. Black, V.S. Fujita, and M.J. Coon, Complete amino acid sequence and predicted membrane topology of phenobarbital-induced cytochrome P-450 (isozyme 2) from rabbit liver microsomes, Proc. Natl. Acad. Sci. USA 80: 6552 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    A. M. Lesk and C. Chothia, How different amino acid sequences determine similar protein structure: the structure and evolutionary dynamics of the globins, J. Mol. Biol. 136: 225 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    C. Chothia and A.M. Lesk, Helix movements and the reconstruction of the haem pocket during the evolution of the cytochrome c family, J. Mol. Biol. 182: 151 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    C. De Lemos-Chiarandini, A.B. Frey, D.D. Sabatini and G. Kreibich, Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies, J. Cell Biol. 104: 209 (1987).PubMedCrossRefGoogle Scholar
  29. 29.
    R. Müller, W.E. Schmidt, and A. Stier, The site of cyclic AMP-dependent protein kinase catalyzed phosphorylation of cytochrome P-450 LM2. FEBS Lett. 187: 21 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    H. Furuya, T. Shimizu, K. Hirano, M. Hatano, Y. Fujii-Kuriyama, R. Raag, and T.L. Poulos, Site-directed mutageneses of rat liver cytochrome P-450d: catalytic activities toward benzphetamine and 7-ethoxycoumarin, Biochemistry: 28: 6848 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    J. Murakami, Y. Yabusaki, T. Sakaki, M. Shibata, and H. Ohkawa, A genetically engineered P-450 monooxygenase: Construction of the functional fused enzyme between rat cytochrome P-450c and NADPH-cytochrome P-450 reductase, DNA 6: 189 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    E.S. Kempner and W. Schlegel, Size determination of enzymes by radiation inactivation, Analvt. Biochem. 92: 2 (1979).CrossRefGoogle Scholar
  33. 33.
    E.S. Kempner and J.H. Miller, Radiation inactivation of glutamate dehydrogenase hexamer: lack of energy transfer between subunits, Science 222: 586 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    F.P. Guengerich, P.F. Churchill, C.Y. Jung and S. Fleischer, Target inactivation analysis applied to determination of rat liver proteins in the purified state and in microsomal membranes, Biochim. Biophvs. Acta 915: 246 (1987).CrossRefGoogle Scholar
  35. 35.
    J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel, structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A resoluton, Nature 318: 618 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    K. Moffat, Time-resolved macromolecular crystallography, Annu. Rev. Biophys. Biophys. Chem. 18: 309 (1989).PubMedCrossRefGoogle Scholar
  37. 37.
    P. Fajer and D. Marsh, Sensitivity of saturation transfer ESR spectra to anisotropic rotation. Application to membrane systems, J. Magn. Reson. 51: 446 (1983).Google Scholar
  38. 38.
    D.D. Thomas, T.M. Eads, V.A. Barnett, K.M. Lindahl, D.A. Momont, and T.C. Squier, Saturation transfer EPR and triplet anisotropy: Complementary techniques for the study of microsecond rotational dynamics, in: “Spectroscopy and the Dynamics of Molecular Biological Systems”, P.M. Bayley, R.E. Dale, eds., Academic Press, London, (1985).Google Scholar
  39. 39.
    D. Schwarz, J. Pirrwitz, and K. Ruckpaul, Rotational diffusion of cytochrome P-450 in the microsomal membrane — evidence for a clusterlike organization from saturation transfer electron paramagnetic resonance spectroscopy, Archives Biochem. Biophys. 216: 322 (1982).CrossRefGoogle Scholar
  40. 40.
    R.M. Cooke and I.D. Campbell, Protein structure determination by nuclear magnetic resonance, Bio Essays 8: 52 (1988)Google Scholar
  41. 41.
    A. Bax, Two-dimensional NMR and protein structure, Annu. Rev. Biochem. 58: 223 (1989).PubMedCrossRefGoogle Scholar
  42. 42.
    K. Wüthrich, “NMR of proteins and nucleic acids”, Wiley, New York (1986).Google Scholar
  43. 43.
    S.O. Smith and R.G. Griffin, High-resolution solid-state NMR of proteins, Annu Rev. Phys. Chem. 39: 511 (1988).PubMedCrossRefGoogle Scholar
  44. 44.
    R. Smith, D.E. Thomas, F. Separovic, A.R. Atkins, and B.A. Cornell, Determination of the structure of a membraneincorporated ion channel, Biophys. J. 56: 307 (1989).PubMedCrossRefGoogle Scholar
  45. 45.
    T.M. Jovin and W.L.C. Vaz, Rotational and translational diffusion in membranes measured by fluorescence and phosphorescence methods, Methods. Enzymol. 172: 471 (1989).PubMedCrossRefGoogle Scholar
  46. 46.
    R. Greinert, H. Staerk, A. Stier, and A. Weiler, E-type delayed fluorescence depolarization, a technique to probe rotational motion in the microsecond range. J. Biochem. Biophvs. Methods. 1: 77 (1979).CrossRefGoogle Scholar
  47. 47.
    R. Greinert and A. Stier, Rotational diffusion of cytochrome P-450 in a reconstituted system measured by depolarization of delayed fluorescence, in: “Biochemistry, Biophysics and Regulation of Cytochrome P-450”, J.Å. Gustafsson, J. Carlstedt Duke, A. Mode, and J. Rafter, eds., Biomedical Press, Elsevier/North-Holland (1980).Google Scholar
  48. 48.
    R. Greinert, S.A.E. Finch, and A. Stier, Cytochrome P-450 rotamers control mixed-function oxygenation in reconstituted membranes. Rotational diffusion studied by delayed fluorescence depolarization. Xenobiotica 12: 717 (1982a).Google Scholar
  49. 49.
    R. Greinert, S.A.E. Finch, and A. Stier, Conformation and rotational diffusion of cytochrome P-450 changed by substrate binding. Biosci. Rep. 2: 991 (1982b).PubMedCrossRefGoogle Scholar
  50. 50.
    R.J. Cherry, Transient dichroism of bacteriorhodopsin, Methods Enzymol. 88: 248 (1982).CrossRefGoogle Scholar
  51. 51.
    W.L.C. Vaz, R.H. Austi, and H. Vogel, The rotational diffusion of cytochrome b5 in lipid bilayer membranes, Biophvs.J. 26:415 (1979)CrossRefGoogle Scholar
  52. 52.
    P. Roesen and A. Stier, Kinetics of CO and 02 complexes of rabbit liver microsomal cytochrome P450, Biochem. Biophys. Res. Commun. 51: 603 (1973).CrossRefGoogle Scholar
  53. 53.
    F. Mitani, T. Iizuka, H. Shimada, R. Ueno, and Y. Ishimura, Flash photolysis studies on the CO complexes of ferrous cytochrome P-450scc and cytochrome P-45011β, J. Biol. Chem. 260: 12042 (1985).PubMedGoogle Scholar
  54. 54.
    C. Richter, K.H. Winterhalter, and R.J. Cherry, Rotational diffusion of cytochrome P-450 in rat liver microsomes, FEBS Lett. 102: 151 (1979).PubMedCrossRefGoogle Scholar
  55. 55.
    S. Kawato, J. Gut, R.J. Cherry, K.H. Winterhalter, and C. Richter, Rotation of cytochrome P-450. I. Invetigation of protein-protein interaction of cytochrome P-450 in phospholipid vesicles and liver microsomes, J, Biol. Chem. 257: 7023 (1982).Google Scholar
  56. 56.
    J. Gut, C. Richter, R.J. Cherry, K.H. Winterhalter, and S. Kawato, Rotation of cytochrome P-450. II. Specific interactions of cytochrome P-450 with NADPH-cytochrome P-450 reductase in phospholipid vesicles, J. Biol. Chem. 257: 7030 (1982).PubMedGoogle Scholar
  57. 57.
    C.A. Parker, “Photoluminescence of Solutions”, Elsevier, Amsterdam (1968).Google Scholar
  58. 58.
    S. Kawato and K. Kinosita, Time-dependent absorption anisotropy and rotational diffusion of proteins in membranes, Biophvs.J. 36: 277 (1981).CrossRefGoogle Scholar
  59. 59.
    K. Kinosita Jr., A. Ikegami, and S. Kawato, On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys. J. 37: 461 (1982).PubMedCrossRefGoogle Scholar
  60. 60.
    B.D. Hughes, B.A. Pailthorpe, L.T. White, and W.H. Sawyer, Extraction of membrane microvisosity from translational and rotational diffusion coefficients, Biophys. J. 37: 673 (1982).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. Stier
    • 1
  • V. Krüger
    • 1
  • T. Eisbein
    • 1
  • S. A. E. Finch
    • 1
  1. 1.Max-Planck-Institut für biophysikalische ChemieAbteilung SpektroskopieGöttingenGermany

Personalised recommendations