Insect Cytochrome P450

  • E. Hodgson
  • Randy Rose
Part of the NATO ASI Series Advanced Science Institutes Series book series (NSSA, volume 202)


Cytochrome P450 (P450) dependent monooxygenase systems occur in most if not all organisms, from bacteria to mammals and higher plants. In insects, the biochemical functions ascribed to this enzyme system include the metabolism of a wide variety of endogenous substrates such as hormones and the oxidation of xenobiotics such as pesticides and secondary plant metabolites. Insect monooxygenase systems appear to be involved in many different physiological processes with roles in growth and development, insecticide resistance and in the interaction of phytophagous insects with multiple host plants. A number of reviews have appeared on these topics in recent years (1–5). Due to it’s importance in the study of the biochemistry and genetics of insecticide resistance the house fly (Musca domestica) has been a useful model species for the study of insect monooxygenases. The purification and characterization of multiple cytochrome P450 isozymes from this species, as well as their role in insecticide resistance is discussed. Recently with the cloning and sequencing of a P450 isozyme from the housefly (6,7) a beginning has been made in the study of the molecular biology of insect cytochrome P450. Heliothis spp are also useful model species since their polyphagy has led to the study of the role of P450 in insect-plant interactions.


Lauric Acid Juvenile Hormone Insecticide Resistance Musca Domestica P450 Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. F. Wilkinson, Role of mixed function oxidases in pesticide resistance, in: “Pest Resistance to Pesticides: Challenge and Prospects”, G. P. Georghiou and M. Saito, eds., Plenum Press, NY (1983).Google Scholar
  2. 2.
    E. Hodgson, The significance of cytochrome P450 in insects, Insect Biochem. 13:237–246 (1983).CrossRefGoogle Scholar
  3. 3.
    E. Hodgson, Microsomal monooxygenas. es, in: “Complete Insect Physiology, Biochemistry and Pharmacology” V.11, G.A. Kerkut and L. I. Gilbert, eds., Pergamon Press, Oxford (1985).Google Scholar
  4. 4.
    L. C. Terriere, Induction of detoxication enzymes in insects, Ann. Rev. Ent. 29:71–88 (1984).CrossRefGoogle Scholar
  5. 5.
    M. J. J. Ronis and E. Hodgson, Cytochrome P450 monooxygenases in insects, Xenobiotica 19:1077–1092 (1989)PubMedCrossRefGoogle Scholar
  6. 6.
    D. W. Nebert, D. R. Nelson and R. Feyereisen, Evolution of the cytochrome P450 genes, Xenobiotica 19:1149–1160 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    R. Feyereisen, J. F. Koener, D. E. Farnsworth and D. W. Nebert, Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica, Proc. Natl. Acad. Sci. 86:1465–1469 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    J. W. Ray, Pest Infestation Research, Her Majesty’s Stationary Office, London (1965).Google Scholar
  9. 9.
    J. W. Ray, The epoxidation of aldrin by housefly microsomes and its inhibition by carbon monoxide, Biochem. Pharmacol. 16:99–107 (1967).CrossRefGoogle Scholar
  10. 10.
    J. D. Cassidy, E. Smith and E. Hodgson, An ultrastructural analysis of microsomal preparations from Musca domestica and Proenia eridania, J. Insect. Physiol. 15:1573–1578 (1969).PubMedCrossRefGoogle Scholar
  11. 11.
    M. D. Gilbert and C. F. Wilkinson, Microsomal Oxidases in the honey bee, Apis mellifera, Pest. Biochem. Phvsiol. 4:56–66 (1974).CrossRefGoogle Scholar
  12. 12.
    G. F. Weirich, J. A. Svoboda and M. J. Thompson, Ecdysone 20-monooxygenase in mitochondria and microsomes of Manduca sexta Midgut: Is dual localization real?, Arch. Insect. Biochem. Phvsiol. 2:385–396 (1985).CrossRefGoogle Scholar
  13. 13.
    M. D. Gorsky and M. J. Coon, Effects of conditions for reconstitution with cytochrome b5 on the formation of products in cytochrome P450 catalysed reactions, Drug Metab. Disp. 14:89–96 (1986).Google Scholar
  14. 14.
    A. Klotz, J. J. Stegman, B. Woodin, E. Snowberger, P. Thomas, and C. Walsh, Cytochrome P450 isozymes from the marine teleost Stenotomus chrysops: Their roles in steroid hydroxylation and the role of cytochrome b5, Arch. Biochem. Biophys. 249:326–338 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    A. J. Baars, J. A. Zijlstra, E. Vogel and D. D. Breimer, The occurrence of cytochrome P450 and aryl hydrocarbon hydroxylase activity in Drosophila melanogaster microsomes and the importance of the metabolizing capacity for the screening of carcinogenic and mutagenic properties of foreign compounds, Mutation Rsch. 44:257–268 (1977).Google Scholar
  16. 16.
    M. J. J. Ronis, W. C. Dauterman and E. Hodgson, Characterization of multiple forms of cytochrome P450 from an insecticide resistant strain of housefly, Musca domestica, Pest. Physiol. Biochem. 32:74–90 (1988).CrossRefGoogle Scholar
  17. 17.
    E. Hodgson and A. P. Kulkarni, Characterization of cytochrome P450 in studies of resistance, in: “Pest Resistance to Pesticides: Challenges and Prospects”, G. P. Georghiou and M. Saito, eds., Plenum Press, New York (1983).Google Scholar
  18. 18.
    B. D. Hammock, NADPH dependant epoxidation of methyl farnesoate to juvenile hormone in the cockroach Blaberus giganticus, Pest. Sci. 17:323–328 (1975).Google Scholar
  19. 19.
    R. Feyereisen, G. E. Pratt and A. F. Hamnett, Enzymic synthesis of juvenile hormone in locust corpora allata: Evidence for a microsomal cytochrome P450-linked methyl fornesoate epoxidase, European J. Biochem. 188:231–238 (1981).Google Scholar
  20. 20.
    G. E. Pratt, R. C. Jennings, A. F. Hamnett and G. T. Brooks, Lethal metabolism of precosene I to a reactive epoxide by locust corpora allata, Nature 284:320–323 (1980).CrossRefGoogle Scholar
  21. 21.
    S. J. Yu and L. C. Terriere, Metabolism of juvenile hormone I by microsomal oxidase, esterase and epoxidase hydratase of Musca Domestica and some comparisons with Phormia regina and Sarcophaga bullata, Pest. Biochem. Physiol. 9:237–246 (1978).CrossRefGoogle Scholar
  22. 22.
    C. W. Fisher and R. T. Mayer, Characterization of house fly microsomal mixed function oxidases: Inhibition of juvenile hormone I and piperonyl butoxide, Toxicology 24:15–31 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    S. J. Yu and L. C. Terriere, Esterase and oxidase activity of housefly microsomes against juvenile hormone analogues containing branched chain ester groups and its induction by phenobarbital, J. Agri. Food Chem. 25:1333–1336 (1977).CrossRefGoogle Scholar
  24. 24.
    S. J. Yu and L. C. Terriere, Metabolism of 14C-hydropene (ethyl, 3,7,11-trimethyl-2,4-dodecadieneoate), by microsomal oxidases and esterases of three species of diptera, J. Agri. Food Chem. 25:1076–1080 (1977).CrossRefGoogle Scholar
  25. 25.
    G. T. Brooks, Insect epoxide hydratase inhibition by juvenile hormone analogues and metabolic inhibitors, Nature 245:382–384 (1973).CrossRefGoogle Scholar
  26. 26.
    G. T. Brooks, Epoxidase hydratase as a modifier of biotransformation and biological activity, Gen.Pharmacol. 8:221–226 (1977).PubMedCrossRefGoogle Scholar
  27. 27.
    S. L. Smith, W. E. Bollenbacker and L. I. Gilbert, Studies on the biosynthesis of ecdysone and 20-hydroxyecdysone in the Tobacco Hornworm, Manduca sexta, in: “Progress in Ecdysterone Research”, A. J. Hoffmann, ed. Elsevier, Holland (1980).Google Scholar
  28. 28.
    S. L. Smith, W. E. Bollenbacker, D. Y. Cooper, H. Schleyer, J. J. Wielgus and L. I. Gilbert, Ecdysone 20-monooxygenases: Characterization of an insect cytochrome P450 dependant steroid hydroxylase, Mol. Cell. Endocrin. 15:111–133 (1979).CrossRefGoogle Scholar
  29. 29.
    R. Feyereisen, Cytochrome P450 et metabolisme de l’ecdysone, Societie Zooligique de France Bulletin 102:310–311 (1977).Google Scholar
  30. 30.
    R. Feyereisen and F. Durst, Ecdysterone biosynthesis: A microsomal cytochrome P450-linked ecdysone 20-monooxygenase from tissues of the African migratory locust, European J. Biochem. 88:37–47 (1979)CrossRefGoogle Scholar
  31. 31.
    M. J. Mitchell and S. L. Smith, Characterization of ecdysone 20-monooxygenase activity in wandering stage larvae of Drosophila melanogaster, Insect Biochem. 16:525–537 (1986).CrossRefGoogle Scholar
  32. 32.
    L. B. Brattsten, Biochemical defense mechanisms in herbivores against plant allochemicals, in: “Herbivores: Their Interactions with Secondary Plant Metabolites”, G. A. Rosenthal and D. H. Janzen, eds., Academic Press, New York (1979).Google Scholar
  33. 33.
    L. B. Brattsten, Ecological significance of mixed-function oxidations, Drug Metab. Rev. 10:35–58 (1979).PubMedCrossRefGoogle Scholar
  34. 34.
    R. A. White, Jr., R. T. Franklin and M. Agosin, Conversion of alpha-pinene to alpha-pinene oxide by rat liver and the bark beetle Dendroctonus terebrans, Pest. Biochem. Physiol. 10:233–242 (1979).CrossRefGoogle Scholar
  35. 35.
    R. A. White, Jr. M. Agosin, R. T. Franklin and J. W. Webb, Bark Beetle pheromones: Evidence for physiological synthesis mechanisms and their ecological implications, Zeitschrift fur Angewante Entomologie 90:255–274 (1980).CrossRefGoogle Scholar
  36. 36.
    S. Ahmad, K. E. Kirkland and G. J. Bloomquist, Evidence for a sex pheromone metabolizing cytochrome P450 monooxygenase in the housefly, Archives of Insect Physiol. and Biochem. 6:121–130 (1987).CrossRefGoogle Scholar
  37. 37.
    S. E. Clarke, C. J. Brealey and G. G. Gibson, Cytochrome P450 in the housefly: Induction, substrate specificity and comparison to three rat hepatic isozymes, Xenobiotica 19:1175–1180 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    A. P. Kulkarni and E. Hodgson, Multiplicity of cytochrome P450 in microsomal membranes from the housefly, Musca Domestica, Biochem. Biophys. Acta 632:573–588 (1980).PubMedCrossRefGoogle Scholar
  39. 39.
    C. F. Wilkinson and L. B. Brattsten, Microsomal drug metabolizing enzymes in insects, Drug Metab. Rev. 1:153–228 (1972).CrossRefGoogle Scholar
  40. 40.
    R. I. Krieger and C. F. Wilkinson, Microsomal mixed function oxidases in insects, I. Localization and properties of an enzyme system effecting aldrin epoxidation in larvae of the Southern Armyworm, (Prodenia eridana), Biochem. Pharmacol. 18:1403–1415 (1969).PubMedCrossRefGoogle Scholar
  41. 41.
    R. S. Anderson, Aryl hydrocarbon hydroxylase in an insect, Spodoptera eridania (Cramer), Comp. Biochem. Physiol. 59:87–93 (1978).Google Scholar
  42. 42.
    R. D. Schonbrod, W. W. Philleo and L. C. Terriere, Hydroylation as a factor in resistance in houseflies and blowflies, J. Econ. Entomol. 58:74–77 (1965).PubMedGoogle Scholar
  43. 43.
    S. J. Yu and L. C. Terriere, Hormonal modification of microsomal oxidase activity in the housefly, Life Sci. 10:1179–1185 (1971).Google Scholar
  44. 44.
    R. I. Kreiger, P. P. Feeny and C. F. Wilkinson, Detoxication enzymes in the guts of caterpillars: An evolutionary answer to plant defences, Science 172:579–581 (1971).CrossRefGoogle Scholar
  45. 45.
    C. H. Walker, Species variation in some microsomal drug metabolizing enzymes, Prog. Drug Metab. 5:113–163 (1980).Google Scholar
  46. 46.
    C. H. Walker, I. Newton, S. Hallam, and M. J. J. Ronis, Activities and toxicological significance of the hepatic microsomal enzymes of the Kestral and Sparrowhawk, Compar. Biochem. Physiol. 860:359–363 (1986).Google Scholar
  47. 47.
    R. C. Skoda, F. J. Gonzalez and D. A. Meyer, Identification of mutant alleles of the P450DB1 gene associated with deficient metabolism of Debrisoquine, in: “Cytochrome P450 Biochemistry and Biophysics”, I. Schuster, ed., Taylor and Francis, UK (in press).Google Scholar
  48. 48.
    R. E. Berry, S. J. Yu and L. C. Terriere, Influence of host plants on insecticide metabolism and management of variegated cutworm, J. Econ. Entomol. 73:771–774 (1980).Google Scholar
  49. 49.
    D. E. Farnsworth, R. E. Berry, S. J. Yu and L. C. Terriere, Aldrin epoxidase activity and cytochrome P450 content of microsomes prepared from alfalfa and cabbage looper larvae fed various plant diets, Pest. Biochem. Physiol. 15:158–165 (1871).CrossRefGoogle Scholar
  50. 50.
    A. F. Moldenke, R. E. Berry and L. C. Terriere, Cytochrome P450 in insects V. Monoterpene induction of cytochrome P450 and associated Monooxygenase activities in the larvae of the variegated cutworm Peridroma saucia, J. Compar. Physiol. Biochem. 74C:365–371 (1983).Google Scholar
  51. 51.
    M. F. Christian and S. J. Yu, Cytochrome P450-dependent monooxygenase activity in the Velvetbean caterpillar, Anticarsia gemmatalis Hubner, Comp. Biochem. Physiol. 83C:23–27 (1986).Google Scholar
  52. 52.
    M. Riskallah, W. C. Dauterman and E. Hodgson, Host plant induction of microsomal monooxygenase activity in relation to diazinon metabolism and toxicity in larvae of the Tobacco Budworm, Heliothis virescens, Pest. Physiol. Biochem. 25:233–247 (1986).CrossRefGoogle Scholar
  53. 53.
    M. Riskallah, W. C. Dauterman and E. Hodgson, Nutritional effects on the induction of cytochrome P450 and glutathione-transferase in larvae of the Tobacco Budworm, Heliothis virescens, Insect Biochem. 16:491–505 (1986b).Google Scholar
  54. 54.
    G. G. Kennedy, 2-Tridecanone, tomatoes and Heliothis zea, potential incompatibility of plant antibiosis with chemical insect control. Entomologia exp. appl. 35:305 (1984).CrossRefGoogle Scholar
  55. 55.
    L. B. Brattsten, C. W. Holyoke Jr., J. R. Leeper and K. F. Raffa, Insecticide resistance: Challenge to pest management and basic research, Science 231:1225–1260 (1986).CrossRefGoogle Scholar
  56. 56.
    M. E. Eldefrawi, R. Miskus and V. Sutcher, Methylenedioxyphenyl derivatives as Synergists for carbamate insecticideson susceptible, DDT-and parathion-resistant houseflies, J. Econ. Entomol. 53:231–234 (1960).Google Scholar
  57. 57.
    Y. P. Sun and E. R. Johnson, Synergistic and antagonistic actions of insecticide-synergist combinations and their mode of action, J. Agri. Food Chem. 8:261–266 (1960).CrossRefGoogle Scholar
  58. 58.
    E. Hodgson and J. E. Casida, Biological oxidation of N,N, dialkyl carbamates, Biochem. Biophys. Acta 42:184–186 (1975).CrossRefGoogle Scholar
  59. 59.
    E. Hodgson and J. E. Casida, Metabolism of N,N, dialkyl carbamates and related compounds by rat liver, Biochem. Pharmacol. 8:179–191 (1961).PubMedCrossRefGoogle Scholar
  60. 60.
    A. R. Dahl and E. Hodgson, The interaction of aliphatic analogues of methylenedioxyphenyl compounds with cytochromes P450 and P-420, Chem. Biol. Interact. 27:163–175 (1979).PubMedCrossRefGoogle Scholar
  61. 61.
    F. W. Plapp, Jr., Biochemical genetics of insecticide resistance, Ann. Rev. Entomol. 21:179–197 (1976).CrossRefGoogle Scholar
  62. 62.
    A. S. Perry and A. J. Bucknor, Studies on microsomal cytochrome P450 resistant and susceptible houseflies, Life Sci. 9:335–350 (1970).PubMedCrossRefGoogle Scholar
  63. 63.
    A. S. Perry, W. E. Dale and A. J. Bucknor, Induction and repression of microsomal mixed-function oxidases and cytochrome P450 in resistant and susceptible houseflies, Pest. Biochem. Physiol. 1:131–142 (1971).CrossRefGoogle Scholar
  64. 64.
    R. M. Philpot and E. Hodgson, Differences in the cytochrome P450s from resistant and susceptible houseflies, Chem.-Biol. Interact. 4:399–408 (1972).PubMedCrossRefGoogle Scholar
  65. 65.
    E. Hodgson, L. G. Tate, A. P. Kulkarni and F. W. Flapp, Jr., Microsomal cytochrome P450: Characterization and possible role in insecticide resistance in Musca domestica, J. Agri. Food Chem. 22:360–366 (1974).CrossRefGoogle Scholar
  66. 66.
    F. W. Plapp, Jr., The genetic basis of insecticide resistance in the house fly: Evidence that a single locus plays a major role in metabolic resistance to insecticides, Pest. Biochem. Physiol. 22:194–201 (1984).CrossRefGoogle Scholar
  67. 67.
    J. Capdevila, A. Morello, A. S. Perry and M. Agosin, Effect of phenobarbital and naphthalene on some of the components of the electron transport system and the hydroxylating activity of housefly microsomes, Biochemistry 12:1445–1451 (1973).PubMedCrossRefGoogle Scholar
  68. 68.
    J. Capdevila, A. S. Perry, A. Morello and M. Agosin, Some spectral properties of cytochrome P450 from microsomes isolated from control, phenobarbital and naphthalene treated houseflies, Biochem. Biophys. Acta. 314:93–103 (1973).PubMedCrossRefGoogle Scholar
  69. 69.
    J. Capdevila and M. Agosin, Multiple forms of housefly cytochrome P450, in: “Microsomes and Drug Oxidations”, V. Ullrich, ed., Pergamon Press, Oxford (1977).Google Scholar
  70. 70.
    J. Capdevila, N. Ahmad and M. Agosin, Soluble cytochrome P450 from housefly microsomes. Partial purification and characterization of two hemoprotein forms, J. Biol. Chem. 250:1048–1060 (1975).Google Scholar
  71. 71.
    L. G. Tate, F. W. Plapp, Jr. and E. Hodgson, Cytochrome P450 difference spectra of microsomes from several different insecticide-resistant and susceptible strains of housefly, Musca domestica, Chem.-Biol. Interact. 6:237–247 (1973).PubMedCrossRefGoogle Scholar
  72. 72.
    L. G. Tate, F. W. Plapp, Jr. and E. Hodgson, Genetics of cytochrome P450 in two insecticide resistant strains of the housefly Musca domestica, Biochem. Genetics 11:49–63 (1974).CrossRefGoogle Scholar
  73. 73.
    L. C. Terriere and S. J. Yu, Cytochrome P450 in insects 2. Multiple forms in the flesh fly (Sarcophaga bullata, Parker) and the blow fly (Phormia regina Meigen), Pest. Biochem. Physiol. 12:249–256 (1979).CrossRefGoogle Scholar
  74. 74.
    S. S. T. Lee and J. G. Scott, Microsomal cytochrome P450 monooxygenases in the house fly (Musca domestica L.): Biochemical changes associated with pyrethroid resistance and phenobarbital induction, Pest. Biochem. Physiol. 35:1–10 (1989).CrossRefGoogle Scholar
  75. 75.
    T. G. Wilson and E. Hodgson, Mechanisms of microsomal mixed-function oxidase inhibitor from the housefly, Musca domestica, Pest. Biochem. Physiol. 2:64–71 (1972).CrossRefGoogle Scholar
  76. 76.
    M. Agosin, Insect cytochrome P450, Mol. and Cell. Biochem. 2:33–44 (1976).CrossRefGoogle Scholar
  77. 77.
    R. D. Schonbrod and L. C. Terriere, Solubilization and separation of two forms of microsomal cytochrome P-450 from the housefly Musca domestica, Biochem. Biophys. Rsch. Commun. 64:829–835 (1975).CrossRefGoogle Scholar
  78. 78.
    S. J. Yu and L. C. Terriere, Enzyme induction in the housefly, the specificity of cyclodiene insecticides, Pest. Biochem. Physiol. 2:184–190 (1972).CrossRefGoogle Scholar
  79. 79.
    C. W. Fisher and R. T. Mayer, Partial purification and characterization of phenobarbital-induced housefly cytochrome P450, Arch. Insect Biochem. Physiol. 1:127–138 (1984).CrossRefGoogle Scholar
  80. 80.
    O. Kodama, E. Hodgson and W. C. Dauterman, Unpublished observations (1985).Google Scholar
  81. 81.
    C. Naquira, R. A. White and M. Agosin, Multiple forms of Drosophila cytochrome P450, in: “Biochemistry, Biophysics and Regulation of Ctyochrome P450”, J. A. Gustafsson, J. Carlstedt-Duke, A. Mode and J. Rafer, eds., Elsevier (1980).Google Scholar
  82. 82.
    M. Agosin, Multiple forms of insect cytochrome P450: Role in insecticide resistance, in: “Cytochrome P-450, Biochemistry, Biophysics and Environmental Implications”, E. Hietanen, M. Laitinen and O. Hanninen, eds., Elsevier (1982).Google Scholar
  83. 83.
    L. C. Waters, S. I. Simms and C. E. Nix, Natural variation in the expression of cytochrome P450 and dimethylnitrosamine demthylase in Drosophila, Biochem. Biophys. Rsch. Commun. 123:907–913 (1984).CrossRefGoogle Scholar
  84. 84.
    L. C. Waters and C. E. Nix, Regulation of insecticide resistance related cytochrome P450 expression in Drosophila melanogaster, Pest. Biochem. Physiol. 30:214–227 (1988).CrossRefGoogle Scholar
  85. 85.
    S. Sundseth, C. E. Nix and L. C. Waters, Isolation of insecticide resistance-related forms of cytochrome P-450 from Drosophila melanogaster, Biochem. J. 265:213–217 (1990).PubMedGoogle Scholar
  86. 86.
    D. R. Vincent, A. F. Moldenke and L. C. Terriere, NADPH-reductase from the housefly, Musca domestica, Insect Biochem. 13:559–566.Google Scholar
  87. 87.
    A. Megias, A. Saborido and A. M. Municio, Cytochrome b from the insect Ceratitis capitata, Biochem. Biophys. Acta 872:116–124 (1986).CrossRefGoogle Scholar
  88. 88.
    A. F. Moldenke, D. R. Vincent, D. E. Farnsworth and L. C. Terriere, Cytochrome P450 in insects 4. Reconstitution of cytochrome P450 dependant monooxygenase activity in the housefly, Pest. Physiol. Biochem. 21:358–368 (1984).CrossRefGoogle Scholar
  89. 89.
    S. Sundseth, S. J. Kennel and L. C. Waters, Monoclonal antibodies to Drosophila cytochrome P450s, Fed. Proc. 46:2142 (1987).Google Scholar
  90. 90.
    S. Sundseth, S. J. Kennel and L. C. Waters, Correlation of cytochrome P450 expression and insecticide resistance in Drosophila, FASEB Journal 2:A1012 (1988).Google Scholar
  91. 91.
    S. Sundseth, Cytochrome P450 related to insecticide resistance in Drosophila melanogaster, Ph.D. dissertation, University of Tennessee (1988).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • E. Hodgson
    • 1
  • Randy Rose
    • 1
  1. 1.Department of ToxicologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations