Multiple Forms of Rabbit Cytochrome P450: Comparison of Chemical Physical, Immunological and Biocatalytic Properties

  • Eric F. Johnson
  • Thomas Kronbach
  • A. Scott Muerhoff
  • Keith J. Griffin
  • Usha R. Pendurthi
  • Robert H. Tukey
Part of the NATO ASI Series Advanced Science Institutes Series book series (NSSA, volume 202)


The cytochrome P450 system of the rabbit is one of the most highly characterized of any species. The majority of the P450s characterized in the rabbit contribute to the metabolism of foreign compounds, where the multiple forms of P450 provide both functional diversity as well as redundancy of function. In addition, a variety of factors regulate the expression of the individual forms of P450. These can be ontogenetic factors leading to differential expression with age and tissue or environmental factors which induce specific P450s.


Liver Microsome Lauric Acid Rabbit Liver Microsomal Cytochrome Complete Amino Acid Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Haugen, and M. J. Coon, Properties of electrophoretically homogeneous phenobarbital-inducib1e and β-naphthoflavone-inducible forms of liver microsomal cytochrome P-450, J.Biol.Chem. 251:7929 (1976).PubMedGoogle Scholar
  2. 2.
    D. A. Haugen, L. G. Armes, K. T. Yasunobu, and M. J. Coon, Aminoterminal sequence of phenobarbital-inducible cytochrome P-450 from rabbit liver microsomes: Similarity to hydrophobic amino-terminal segments of preproteins, Biochem. Biophys. Res. Commun. 77:967 (1977).PubMedGoogle Scholar
  3. 3.
    E. F. Johnson, M. C. Zounes, and U. Muller-Eberhard, Characterization of three forms of rabbit microsomal cytochrome P-450 by peptide mapping utilizing limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis, Arch. Biochem. Biophys. 192:282 (1979).PubMedGoogle Scholar
  4. 4.
    D. W. Nebert, D. R. Nelson, M. Adesnik, M. J. Coon, R. W. Estabrook, F. J. Gonzalez, F. P. Guengerich, I. C. Gunsalus, E. F. Johnson, B. Kemper, W. Levin, I. R. Phillips, R. Sato, and M. R. Waterman, The P450 superfamily: Updated listing of all genes and recommended nomenclature of the chromosomal loci, DNA 8:1 (1989).PubMedGoogle Scholar
  5. 5.
    H. H. Dieter, U. Muller-Eberhard, and E. F. Johnson, Identification of rabbit microsomal cytochrome P-450 isozyme, form 1, as a hepatic progesterone 21-hydroxylase, Biochem. Biophys. Res. Commun. 105:515 (1982).PubMedGoogle Scholar
  6. 6.
    R. H. Tukey, S. T. Okino, H. J. Barnes, K. J. Griffin, and E. F. Johnson, Multiple gene-like sequences related to the rabbit hepatic progesterone 21-hydroxylase cytochrome P-450 1, J.Biol. Chem. 260:13347 (1985).PubMedGoogle Scholar
  7. 7.
    H. H. Dieter, U. Muller-Eberhard, and E. F. Johnson, Rabbit hepatic progesterone 21-hydroxylase exhibits a bimodal distribution of activity, Science 217:741 (1982).PubMedGoogle Scholar
  8. 8.
    E. F. Johnson, M. Finlayson, C. M. Hujsak, U. R. Pendurthi, and R. H. Tukey, Genetic contributions to the variation among rabbits of liver microsomal deoxycorticosterone synthesis, Arch. Biochem. Biophys. 273:273 (1989).PubMedGoogle Scholar
  9. 9.
    T. A. van der Hoeven, D. A. Haugen, and M. J. Coon, Cytochrome P-450 purified to apparent homogeneity from phenobarbital-induced rabbit liver microsomes: Catalytic activity and other properties, Biochem. Biophvs. Res. Commun. 60:569 (1974).Google Scholar
  10. 10.
    Y. Imai, and R. Sato, A gel-electrophoretically homogeneous preparation of cytochrome P-450 from liver microsomes of phenobarbital-pretreated rabbits, Biochem. Biophys. Res. Commun. 60:8 (1974).PubMedGoogle Scholar
  11. 11.
    G. E. Tarr, S. D. Black, V. S. Fujita, and M. J. Coon, Complete amino acid sequence and predicted membrane topology of phenobarbital-induced cytochrome P-450 (isozyme 2) from rabbit liver microsomes, Proc. Natl. Acad. Sci. USA 80:6552 (1983).PubMedGoogle Scholar
  12. 12.
    R. Gasser, M. Negishi, and R. M. Philpot, Primary structures of multiple forms of cytochrome P-450 isozyme 2 derived from rabbit pulmonary and hepatic cDNAs, Mol. Pharmacol. 33:22 (1988).PubMedGoogle Scholar
  13. 13.
    F. S. Heinemann, and J. Ozols, The complete amino acid sequence of rabbit phenobarbital-induced liver microsomal cytochrome P-450, J.Biol. Chem. 258:4195 (1983).PubMedGoogle Scholar
  14. 14.
    M. Komori, Y. Imai, S. Tsunasawa, and R. Sato, Microheterogeneity in the major phenobarbital-inducib1e forms of rabbit liver microsomal cytochrome P-450 as revealed by nucleotide sequencing of cloned cDNAs, Biochemistry 27:73 (1988).PubMedGoogle Scholar
  15. 15.
    D. A. Haugen, T. A. van der Hoeven, and M. J. Coon, Purified liver microsomal cytochrome P-450. Separation and characterization of multiple forms, J.Biol.Chem. 250:3567 (1975).PubMedGoogle Scholar
  16. 16.
    G. E. Schwab, R. L. Norman, U. Muller-Eberhard, and E. F. Johnson, Identification of the form of cytochrome P-450 induced in neonatal rabbit liver microsomes by phenobarbital, Mol. Pharmacol. 17:218 (1980).PubMedGoogle Scholar
  17. 17.
    D. R. Koop, E. T. Morgan, G. E. Tarr, and M. J. Coon, Purification and characterization of a unique isozyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits, J.Biol. Chem. 257:8472 (1982).PubMedGoogle Scholar
  18. 18.
    M. Ingelman-Sundberg, and A.-L. Hagbjork, On the significance of the cytochrome P-450-dependent hydroxyl radical-mediated oxygenation mechanism, Xenobiotica 12:673 (1982).PubMedGoogle Scholar
  19. 19.
    S. C. Khani, P. G. Zaphiropoulos, V. S. Fujita, T. D. Porter, D. R. Koop, and M. J. Coon, cDNA and derived amino acid sequence of ethanol-inducib1e rabbit liver cytochrome P-450 isozyme 3a (P-450 alc), Proc. Natl. Acad. Sci. USA 84:638 (1987).PubMedGoogle Scholar
  20. 20.
    D. R. Koop, G. D. Nordblom, and M. J. Coon, Immunochemical evidence for a role of cytochrome P-450 in liver microsomal ethanol oxidation, Arch. Biochem. Biophvs. 235:228 (1984).Google Scholar
  21. 21.
    M. Ingelman-Sundberg, and H. Jornvall, Induction of the ethanol-inducible form of rabbit liver microsomal cytochrome P-450 by inhibitors of alcohol dehydrogenase, Biochem. Biophys. Res. Commun. 124:375 (1984).PubMedGoogle Scholar
  22. 22.
    E. F. Johnson, Isolation and characterization of a constitutive form of rabbit liver microsomal cytochrome P-450, J.Biol. Chem. 255:304 (1980).PubMedGoogle Scholar
  23. 23.
    D. R. Koop, and M. J. Coon, Purification and properties of P-450LM3b, a constitutive form of cytochrome P-450, from rabbit liver microsomes, Biochem. Biophvs. Res. Commun. 91:1075 (1979).Google Scholar
  24. 24.
    J. Ozols, F. S. Heinemann, and E. F. Johnson, The complete amino acid sequence of a constitutive form of liver microsomal cytochrome P-450, J.Biol. Chem. 260:5427 (1985).PubMedGoogle Scholar
  25. 25.
    J. K. Leighton, B. A. DeBrunner-Vossbrinck, and B. Kemper, Isolation and sequence analysis of three cloned cDNAs for rabbit liver proteins that are related to rabbit cytochrome P-450 (form 2), the major phenobarbital-inducible form, Biochemistry 23:204 (1984).PubMedGoogle Scholar
  26. 26.
    H. H. Dieter, and E. F. Johnson, Functional and structural polymorphism of rabbit microsomal cytochrome P-450 form 3b, J.Biol. Chem. 257:9315 (1982).PubMedGoogle Scholar
  27. 27.
    N. Miki, T. Sugiyama, T. Yamano, and Y. Miyake, Characterization of a highly purified form of cytochrome P-450 Bl, Biochem. Int. 3:217 (1981).Google Scholar
  28. 28.
    D. R. Koop, A. V. Persson, and M. J. Coon, Properties of electrophoretically homogeneous constitutive forms of liver microsomal cytochrome P-450, J.Biol. Chem. 256:10704 (1981).PubMedGoogle Scholar
  29. 29.
    C. Dalet, P. Clair, M. Daujat, P. Fort, J.-M. Blanchard, and P. Maurel, Complete sequence of cytochrome P450 3c cDNA and presence of two mRNA species with 3′ untranslated regions of different lengths, DNA 7:39 (1988).PubMedGoogle Scholar
  30. 30.
    C. L. Potenza, U. R. Pendurthi, D. K. Strom, R. H. Tukey, K. J. Griffin, G. E. Schwab, and E. F. Johnson, Regulation of the rabbit cytochrome P-450 3c gene: Age dependent expression and transcriptional activation by rifampicin, J.Biol. Chem. 264:16222 (1989).PubMedGoogle Scholar
  31. 31.
    R. Lange, C. Larroque, C. Balny, and P. Maurel, Isolation and partial characterization of a rifampicin induced rabbit liver microsomal cytochrome P-450, Biochem. Biophys. Res. Commun. 126:833 (1985).PubMedGoogle Scholar
  32. 32.
    S. Yamamoto, E. Kusunose, K. Ogita, M. Kaku, K. Ichihara, and M. Kusunose, Isolation of cytochrome P-450 highly active in prostaglandin ω-hydroxylation from lung microsomes of rabbits treated with progesterone, J.Biochem. 96:593 (1984).PubMedGoogle Scholar
  33. 33.
    D. E. Williams, S. E. Hale, R. T. Okita, and B. S. S. Masters, A prostaglandin ω-hydroxylase cytochrome P-450 (P-450 PG-ω) purified from lungs of pregnant rabbits, J.Biol.Chem. 259:14600 (1984).PubMedGoogle Scholar
  34. 34.
    S. Matsubara, S. Yamamoto, K. Sogawa, N. Yokotani, Y. Fujii-Kuriyama, M. Haniu, J. E. Shively, O. Gotoh, E. Kusunose, and M. Kusunose, cDNA cloning and inducible expression during pregnancy of the mRNA for rabbit pulmonary prostaglandin ω-hydroxylase (cytochrome P-450p-2), J.Biol.Chem. 262:13366 (1987).PubMedGoogle Scholar
  35. 35.
    A. S. Muerhoff, D. E. Williams, M. T. Leithauser, V. E. Jackson, M. R. Waterman, and B. S. S. Masters, Regulation of the induction of a cytochrome P-450 prostaglandin ω-hydroxylase by pregnancy in rabbit lung, Proc. Natl. Acad. Sci. 84:7911 (1987).PubMedGoogle Scholar
  36. 36.
    Y. Kikuta, E. Kusunose, S. Matsubara, Y. Funae, S. Imaoka, I. Kubota, and M. Kusunose, Purification and characterization of hepatic microsomal prostaglandin omega-hydroxylase cytochrome P-450 from pregnant rabbits, J.Biochem. 106:468 (1989).PubMedGoogle Scholar
  37. 37.
    E. F. Johnson, and U. Muller-Eberhard, Purification of the major cytochrome P-450 of liver microsomes from rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), Biochem. Biophys. Res. Commun. 76:652 (1977).PubMedGoogle Scholar
  38. 38.
    J. C. Kawalek, W. Levin, D. Ryan, P. E. Thomas, and A. Y. H. Lu, Purification of liver microsomal cytochrome P-448 from 3-methylcholanthrene-treated rabbits, Mol. Pharmacol. 11:874 (1975).PubMedGoogle Scholar
  39. 39.
    C. Hashimoto, and Y. Imai, Purification of a substrate complex of cytochrome P-450 from liver microsomes of 3-methylcholanthrene-treated rabbits, Biochem. Biophvs. Res. Commun. 68:821 (1976).Google Scholar
  40. 40.
    S. T. Okino, L. C. Quattrochi, H. J. Barnes, S. Osanto, K. J. Griffin, E. F. Johnson, and R. H. Tukey, Cloning and characterization of cDNAs encoding 2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible rabbit mRNAs for cytochrome P-450 isozymes 4 and 6, Proc. Natl. Acad. Sci. USA 82:5310 (1985).PubMedGoogle Scholar
  41. 41.
    N. Kagawa, K. Mihara, and R. Sato, Structural analysis of cloned cDNAs for polycyclic hydrocarbon-inducible forms of rabbit liver microsomal cytochrome P-450, J.Biochem. 101:1471 (1987).PubMedGoogle Scholar
  42. 42.
    J. Ozols, Complete amino acid sequence of a cytochrome P-450 isolated from β-naphthoflavone-induced rabbit liver microsomes. Comparison with phenobarbital-induced and constitutive isozymes and identification of invariant residues, J.Biol. Chem. 261:3965 (1986).PubMedGoogle Scholar
  43. 43.
    R. L. Norman, E. F. Johnson, and U. Muller-Eberhard, Identification of the major cytochrome P-450 form transplacentally induced in neonatal rabbits by 2,3,7,8-tetrachlorodibenzo-p-dioxin, J.Biol. Chem. 253:8640 (1978).PubMedGoogle Scholar
  44. 44.
    R. M. Philpot, and E. Arinc, Separation and purification of two forms of hepatic cytochrome P-450 from untreated rabbits, Mol. Pharmacol. 12:483 (1976).PubMedGoogle Scholar
  45. 45.
    R. Gasser, and R. M. Philpot, Primary structures of cytochrome P-450 isozyme 5 from rabbit and rat and regulation of species-dependent expression and induction in lung and liver: Identification of cytochrome P-450 gene subfamily IVB, Mol. Pharm. 35:617 (1989).Google Scholar
  46. 46.
    Z. Parandoosh, V. S. Fujita, M. J. Coon, and R. M. Philpot, Cytochrome P-450 isozymes 2 and 5 in rabbit lung and liver. Comparisons of structure and inducibility, Drug Metab. Dispos. 15:59 (1987).PubMedGoogle Scholar
  47. 47.
    E. F. Johnson, and U. Muller-Eberhard, Multiple forms of cytochrome P-450: Resolution and purification of rabbit liver aryl hydrocarbon hydroxylase, Biochem. Biophvs. Res. Commun. 76:644 (1977).Google Scholar
  48. 48.
    D. Kupfer, Endogenous substrates of monooxygenases: Fatty acids and prostaglandins, Pharmacol. Ther. 11:469 (1980).PubMedGoogle Scholar
  49. 49.
    M. L. Schwartzman, J. R. Falck, P. Yadagiri, and B. Escalante, Metabolism of 20-hydroxyeicosatetraenoic acid by cyclooxygenase, J.Biol. Chem. 264:11658 (1989).PubMedGoogle Scholar
  50. 50.
    W. S. Powell, ω-Oxidation of prostaglandins by lung and liver microsomes. Changes in enzyme activity induced by pregnancy, pseudopregnancy, and progesterone treatment, J.Biol. Chem. 253:6711 (1978).PubMedGoogle Scholar
  51. 51.
    A. Y. H. Lu, K. W. Junk, and M. J. Coon, Resolution of the cytochrome P-450-containing ω-hydroxylation system of liver microsomes into three components, J.Biol. Chem, 244:3714 (1969).PubMedGoogle Scholar
  52. 52.
    E. Kusunose, K. Ogita, K. Ichihara, and M. Kusunose, Effect of cytochrome b5 on fatty acid ω-and (ω-1)-hydroxylation catalyzed by partially purified cytochrome P-450 from rabbit kidney cortex microsomes, J.Biochem. 90:1069 (1981).PubMedGoogle Scholar
  53. 53.
    S. Yamamoto, E. Kusunose, M. Kaku, K. Ichihara, and M. Kusunose, Effect of peroxisomal proliferators on microsomal prostaglandin A ω-hydroxylase, J.Biochem. 100:1449 (1986).PubMedGoogle Scholar
  54. 54.
    M. Kusunose, E. Kusunose, K. Ichihara, K. Ogita, M. Kaku, and S. Yamamoto, Cytochrome P-450-linked prostaglandin w-hydroxylase, in: “Advances in Prostaglandin, Thromboxane, and Leukotriene Research,” O. Hayaishi, and S. Yamamoto, eds., Raven Press, New York (1985).Google Scholar
  55. 55.
    E. F. Johnson, D. W. Walker, K. J. Griffin, J. E. Clark, R. T. Okita, A. S. Muerhoff, and B. S. Masters, Cloning and expression of three rabbit kidney cDNAs encoding lauric acid ω-hydroxylases, Biochemistry 29:873 (1990).PubMedGoogle Scholar
  56. 56.
    J. L. Raucy, and E. F. Johnson, Variations among untreated rabbits in benzo (a) pyrene metabolism and its modulation by 7,8-benzoflavone, Mol. Pharmacol. 27:296 (1985).PubMedGoogle Scholar
  57. 57.
    G. E. Schwab, and E. F. Johnson, Variation in hepatic microsomal cytochrome P-450 1 concentration among untreated rabbits alters the efficiency of estradiol hydroxylation, Arch. Biochem. Biophys. 237:17 (1985).PubMedGoogle Scholar
  58. 58.
    P. E. Thomas, D. Korzeniowski, D. Ryan, and W. Levin, Preparation of monospecific antibodies against two forms of rat liver cytochrome P-450 and quantitation of these antigens in microsomes, Arch. Biochem. Biophys. 192:524 (1979).PubMedGoogle Scholar
  59. 59.
    I. R. Senciall, G. Bullock, and S. Rahal, Progesterone C21 hydroxylation and steroid carboxylic acid biosynthesis in the rabbit. In vitro studies with endocrine, metabolic, and potential target tissues, Can. J.Biochem. Cell Biol. 61:722 (1983).PubMedGoogle Scholar
  60. 60.
    C. Ged, D. R. Umbenhauer, T. M. Bellew, R. W. Bork, P. K. Srivastava, N. Shinriki, R. S. Lloyd, and F. P. Guengerich, Characterization of cDNAs, mRNAs, and proteins related to human liver microsomal cytochrome P-450 (S)-Mephenytoin 4′-hydroxylase, Biochemistry 27:6929 (1988).PubMedGoogle Scholar
  61. 61.
    T. Yasumori, N. Murayama, Y. Yamazoe, A. Abe, Y. Nogi, T. Fukasawa, and R. Kato, Expression of a human P-450IIC gene in yeast cells using galactose-inducible expression system, Mol. Pharm. 35:443 (1989).Google Scholar
  62. 62.
    G. R. Wilkinson, F. P. Guengerich, and R. A. Branch, Genetic polymorphism of S-mephenytoin hydroxylation, Pharmacol. Ther. 43:53 (1989).PubMedGoogle Scholar
  63. 63.
    W. R. Brian, P. K. Srivastava, D. R. Umbenhauer, R. S. Lloyd, and F. P. Guengerich, Expression of a human liver cytochrome P-450 protein with tolbutamide hydroxylase activity in Saccharomyces cerevisiae, Biochemistry 28:4993 (1989).PubMedGoogle Scholar
  64. 64.
    I. Reubi, K. J. Griffin, J. L. Raucy, and E. F. Johnson, Three monoclonal antibodies to rabbit microsomal cytochrome P-450 1 recognize distinct epitopes that are shared to different degrees among other electrophoretic types of cytochrome P-450, J.Biol. Chem. 259:5887 (1984).PubMedGoogle Scholar
  65. 65.
    I. Reubi, K. J. Griffin, J. Raucy, and E. F. Johnson, Use of a monoclonal antibody specific for rabbit microsomal cytochrome P-450 3b to characterize the participation of this cytochrome in the microsomal 6β-and 16α-hydroxylation of progesterone, Biochemistry 23:4598 (1984).PubMedGoogle Scholar
  66. 66.
    M. J. Finlayson, J. H. Dees, B. S. S. Masters, and E. F. Johnson, Differential expression of cytochrome P-450 1 and related forms in rabbit liver and kidney, Arch. Biochem. Biophvs. 252:113 (1986).Google Scholar
  67. 67.
    J. K. Leighton, and B. Kemper, Differential induction and tissuespecific expression of closely related members of the phenobarbital-inducible rabbit cytochrome P-450 gene family, J.Biol. Chem. 259:11165 (1984).PubMedGoogle Scholar
  68. 68.
    M. J. Finlayson, B. Kemper, N. Browne, and E. F. Johnson, Evidence that rabbit cytochrome P-450 K is encoded by the plasmid pP-450 PBc2, Biochem. Biophys. Res. Commun. 141:728 (1986).PubMedGoogle Scholar
  69. 69.
    S. Govind, P. A. Bell, and B. Kemper, Structure of genes in the cytochrome P-450PBc subfamily. Conservation of intron locations in the phenobarbital-inducible family, DNA 5:371 (1986).PubMedGoogle Scholar
  70. 70.
    Y. Imai, Characterization of rabbit liver cytochrome P-450 (Laurate ω-l hydroxylase) synthesized in transformed yeast cells, J. Biochem. 103:143 (1988).PubMedGoogle Scholar
  71. 71.
    E. F. Johnson, H. J. Barnes, K. J. Griffin, S. Okino, and R. H. Tukey, Characterization of a second gene product related to rabbit cytochrome P-450 1, J.Biol. Chem. 262:5918 (1987).PubMedGoogle Scholar
  72. 72.
    L. Ghizzoni, U. Muller-Eberhard, H. H. Liem, M. New, M. Finlayson, and E. F. Johnson, Characterization of variations in rabbit hepatic progesterone 21-hydroxylase activity by serial biopsy, Biochem. Biophys. Res. Commun. 130:43 (1985).PubMedGoogle Scholar
  73. 73.
    E. F. Johnson, and K. J. Griffin, Variations in hepatic progesterone 21-hydroxylase activity reflect differences in the microsomal concentration of rabbit cytochrome P-450 1, Arch. Biochem. Biophys. 237:55 (1985).PubMedGoogle Scholar
  74. 74.
    G. E. Schwab, and E. F. Johnson, Two catalytically distinct subforms of P-450 3b as obtained from inbred rabbits, Biochemistry 24:7222 (1985).PubMedGoogle Scholar
  75. 75.
    E. F. Johnson, G. E. Schwab, and H. H. Dieter, Allosteric regulation of the 16α-hydroxylation of progesterone as catalyzed by rabbit microsomal cytochrome P-450 3b, J.Biol. Chem. 258:2785 (1983).PubMedGoogle Scholar
  76. 76.
    T. Kronbach, T. M. Larabee, and E. F. Johnson, Hybrid cytochromes P-450 identify a substrate binding domain in P-450IIC5 and P-450IIC4, Proc. Natl. Acad. Sci. USA 86:8262 (1989).PubMedGoogle Scholar
  77. 77.
    R. L. P. Lindberg, and M. Negishi, Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue, Nature 339:632 (1989).PubMedGoogle Scholar
  78. 78.
    T. L. Poulos, B. C. Finzel, and A. J. Howard, High-resolution crystal structure of cytochrome P450cam, J.Mol. Biol. 195:687 (1987).PubMedGoogle Scholar
  79. 79.
    W. M. Atkins, and S. G. Sligar, The roles of active site hydrogen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis, J.Biol. Chem. 263:18842 (1988).PubMedGoogle Scholar
  80. 80.
    D. R. Nelson, and H. W. Strobel, Secondary structure prediction of 52 membrane-bound cytochromes P450 shows a strong structural similarity to P450cam, Biochemistry 28:656 (1989).PubMedGoogle Scholar
  81. 81.
    R. J. Edwards, B. P. Murray, A. R. Boobis, and D. S. Davies, Identification and location of α-helices in mammalian cytochrome P450, Biochemistry 28:3762 (1989).PubMedGoogle Scholar
  82. 82.
    T. L. Poulos, Site-directed mutagenesis: Reversing enzyme specificity, Nature 339:580 (1989).PubMedGoogle Scholar
  83. 83.
    B. P. Unger, I. C. Gunsalus, and S. G. Sligar, Nucleotide sequence of the pseudomonas putida cytochrome P-450cam gene and its expression in Escherichia coli, J.Biol. Chem. 261:1158 (1986).PubMedGoogle Scholar
  84. 84.
    T. L. Poulos, Cytochrome P450: Molecular architecture, mechanism, and prospects for rational inhibitor design, Pharmac. Res. 5:67 (1989).Google Scholar
  85. 85.
    P. S. Stayton, T. L. Poulos, and S. G. Sligar, Putidaredoxin competitively inhibits cytochrome b5-cytochrome P-450cam association: A proposed molecular model for a cytochrome P-450cam electrontransfer complex, Biochemistry 28:8201 (1989).PubMedGoogle Scholar
  86. 86.
    G. Vergeres, K. H. Winterhalter, and C. Richter, Identification of the membrane anchor of microsomal rat liver cytochrome P-450, Biochemistry 28:3650 (1989).PubMedGoogle Scholar
  87. 87.
    S. Monier, P. Van Luc, G. Kreibich, D. D. Sabatini, and M. Adesnik, Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane, J.Cell. Biol. 107:457 (1988).PubMedGoogle Scholar
  88. 88.
    E. Szczesna-Skorupa, N. Browne, D. Mead, and B. Kemper, Positive charges at the NH2 terminus convert the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide, Proc. Natl. Acad. Sci. USA 85:738 (1988).PubMedGoogle Scholar
  89. 89.
    C. A. Brown, and S. D. Black, Membrane topology of mammalian cytochromes P-450 from liver endoplasmic reticulum. Determination by trypsinolysis of phenobarbital-treated micrsomes, J.Biol. Chem. 264:4442 (1989).PubMedGoogle Scholar
  90. 90.
    J. P. Hardwick, F. J. Gonzalez, and C. B. Kasper, Transcriptional regulation of rat liver epoxide hydratase, NADPH-cytochrome P-450 oxidoreductase, and cytochrome P-450b genes by phenobarbital, J.Biol. Chem. 258:8081 (1983).PubMedGoogle Scholar
  91. 91.
    S. F. Pike, E. A. Shephard, B. R. Rabin, and I. R. Phillips, Induction of cytochrome P-450 by phenobarbital is mediated at the level of transcription, Biochem.Pharmacol. 34:2489 (1985).PubMedGoogle Scholar
  92. 92.
    D. I. Israel, and J. P. Whitlock Jr., Regulation cytochrome Pl-450 gene transcription by 2,3,7,8-tetrachlorodibenzo-p-dioxin in wild type and variant mouse hepatoma cells, J.Biol. Chem. 259:5400 (1984).PubMedGoogle Scholar
  93. 93.
    F. J. Gonzalez, R. H. Tukey, and D. W. Nebert, Structural gene products of the Ah locus. Transcriptional regulation of cytochrome Pl-450 and P3-450 mRNA levels by 3-methylcholanthrene, Mol. Pharmacol. 26:117 (1984).PubMedGoogle Scholar
  94. 94.
    J. P. Hardwick, B-J. Song, E. Huberman, and F. J. Gonzalez, Isolation, complementary DNA sequence, and regulation of rat hepatic lauric acid ω-hydroxylase (cytochrome P-450LAω), J.Biol. Chem. 262:801 (1987).PubMedGoogle Scholar
  95. 95.
    B-J. Song, H. V. Gelboin, S-S. Park, C. S. Yang, and F. J. Gonzalez, Complementary DNA and protein sequences of ethanol-inducib1e rat and human cytochrome P-450s, J.Biol. Chem. 261:16689 (1986).PubMedGoogle Scholar
  96. 96.
    T. D. Porter, S. C. Khani, and M. J. Coon, Induction and tissue — specific expression of rabbit cytochrome P450IIE1 and IIE2 genes, Mol. Pharm. 36:61 (1989).Google Scholar
  97. 97.
    D. L. Simmons, P. McQuiddy, and C. B. Kasper, Induction of the hepatic mixed-function oxidase system by synthetic glucocorticoids, J.Biol. Chem. 262:326 (1987).PubMedGoogle Scholar
  98. 98.
    C. Dalet, J. M. Blanchard, P. Guzelian, J. Barwick, H. Hartle, and P. Maurel, Cloning of a cDNA coding for P-450 LM3c from rabbit liver microsomes and regulation of its expression, Nucleic Acids Res. 14:5999 (1986).PubMedGoogle Scholar
  99. 99.
    P. B. Watkins, S. A. Wrighton, E. G. Schuetz, P. Maurel, and P. S. Guzelian, Macrolide antibiotics inhibit the degradation of the glucocorticoid-responsive cytochrome P-450p in rat hepatocytes in vivo and in primary monolayer culture, J.Biol. Chem. 261:6264 (1986).PubMedGoogle Scholar
  100. 100.
    J. Combalbert, I. Fabre, G. Fabre, I. Dalet, J. Derancourt, J. P. Cano, and P. Maurel, Metabolism of cyclosporin A. IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily, Drug Metab. Dispos, 17:197 (1989).PubMedGoogle Scholar
  101. 101.
    C. Ged, J. M. Rouillon, L. Pichard, J. Combalbert, N. Bressot, P. Bories, H. Michel, P. Beaune, and P. Maurel, The increase in urinary excretion of 6β-hydroxycortisol as a marker of human hepatic cytochrome P450IIIA induction, Br.J.Clin. Pharmacol. 28:373 (1989).PubMedGoogle Scholar
  102. 102.
    S. A. Wrighton, E. G. Schuetz, P. B. Watkins, P. Maurel, J. Barwick, B. S. Bailey, H. T. Hartle, B. Young, and P. Guzelian, Demonstration in multiple species of inducible hepatic cytochromes P-450 and their mRNAs related to the glucocorticoid-inducible cytochrome P-450 of the rat, Mol. Pharmacol, 28:312 (1985).PubMedGoogle Scholar
  103. 103.
    J. Kapitulnik, P. J. Poppers, M. K. Buening, J. G. Fortner, and A. H. Conney, Activation of monooxygenases in human liver by 7,8-benzoflavone, Clin. Pharmacol. Ther. 22:475 (1977).PubMedGoogle Scholar
  104. 104.
    M. K. Buening, J. G. Fortner, A. Kappas, and A. H. Conney, 7,8-benzoflavone stimulates the metabolic activation of aflatoxin Bl to mutagens by human liver, Biochem. Biophys. Res. Commun. 82:348 (1978).PubMedGoogle Scholar
  105. 105.
    M. K. Buening, R. L. Chang, M-T. Huang, J. G. Fortner, A. W. Wood, and A. H. Conney, Activation and inhibition of benzo (a) pyrene and aflotoxin Bl metabolism in human liver microsomes by naturally occurring flavonoids, Cancer Res. 41:67 (1981).PubMedGoogle Scholar
  106. 106.
    D. R. Thakker, W. Levin, M. Buening, H. Yagi, R. E. Lehr, A. W. Wood, A. H. Conney, and D. M. Jerina, Species-specific enhancement by 7,8-benzoflavone of hepatic microsomal metabolism of benzo [e] pyrene 9,10-dihydrodiol to bay-region diol epoxides, Cancer Res. 41:1389 (1981).PubMedGoogle Scholar
  107. 107.
    M-T. Huang, R. L. Chang, J. G. Fortner, and A. H. Conney, Studies on the mechanism of activation of microsomal benzo (a) pyrene hydroxylation by flavonoids, J.Biol. Chem. 256:6829 (1981).PubMedGoogle Scholar
  108. 108.
    M-T. Huang, E. F. Johnson, U. Muller-Eberhard, D. R. Koop, M. J. Coon, and A. H. Conney, Specificity in the activation and inhibition by flavonoids of benzo (a) pyrene hydroxylation by cytochrome P-450 isozymes from rabbit liver microsomes, J.Biol. Chem. 256:10897 (1981).PubMedGoogle Scholar
  109. 109.
    P. B. Watkins, S. A. Wrighton, P. Maurel, E. G. Schuetz, G. Mendez-Picon, G. A. Parker, and P. S. Guzelian, Identification of an inducible form of cytochrome P-450 in human liver, Proc. Natl. Acad. Sci. USA 82:6310 (1985).PubMedGoogle Scholar
  110. 110.
    G. E. Schwab, J. L. Raucy, and E. F. Johnson, Modulation of rabbit and human hepatic cytochrome P450-catalyzed steroid hydroxylations by α-naphthoflavone, Mol. Pharmacol. 33:493 (1988).PubMedGoogle Scholar
  111. 111.
    E. F. Johnson, G. E. Schwab, and L. E. Vickery, Positive effectors of the binding of an active site-directed amino steroid to rabbit cytochrome P-450 3c, J.Biol. Chem. 263:17672 (1988).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Eric F. Johnson
    • 1
  • Thomas Kronbach
    • 1
  • A. Scott Muerhoff
    • 1
  • Keith J. Griffin
    • 1
  • Usha R. Pendurthi
    • 1
  • Robert H. Tukey
    • 2
  1. 1.Department of Molecular and Experimental MedicineScripps Clinic and Research FoundationLa JollaUSA
  2. 2.School of MedicineUniversity of California San DiegoLa JollaUSA

Personalised recommendations