Benzene Metabolism

  • Robert Snyder
  • Suzanne Pirozzi Chatterjee
Part of the NATO ASI Series Advanced Science Institutes Series book series (NSSA, volume 202)


Exposure to benzene in industry has been a problem for over a century and today it has become a problem for the entire population with the prevalence of benzene in gasoline. The first reports of the metabolites of benzene in urine included the finding of phenol (1); hydroquinone and catechol (2); trans, trans-muconic acid (3) and phenylmercapturic acid (4).


Liver Microsome Covalent Binding Microsomal Protein Mercapturic Acid Carbonyl Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Schultzen and B. Nauynyn, Uber das verhalten des kohlenwasserstoffes, Arch. Anat. Physio. 1:349 (1867).Google Scholar
  2. 2.
    M. Nencki and P. Giacosa, Uber die oxydation der aromatischen kohlenwasserstoffe in turkoyser, Z. Physiol. Chem. 4:325 (1880).Google Scholar
  3. 3.
    M. Jaffe, Cleavage of the benzene ring in the organism. I. The excretion of muconic acid in the urine after ingestion of benzene. Z. Phvsiol. Chem. 62:58 (1909).CrossRefGoogle Scholar
  4. 4.
    S. Zbarsky and L. Young, The conversion of benzene to phenyl-mercapturic acid in the rat, J. Biol. Chem. 151:487 (1943).Google Scholar
  5. 5.
    D. Parke and R.T. Williams, Studies on detoxification. The metabolism of benzene: (a) the formation of phenylglucuronide and phenylsulphuric acid from 14C benzene; (b) the metabolism of 14C phenol, Biochem J. 55:337 (1953).PubMedGoogle Scholar
  6. 6.
    D. Parke and R.T. Williams, Detoxication XLIV. Metabolism of benzene containing 14C benzene, Biochem. J. 54:231 (1954).Google Scholar
  7. 7.
    G.M. Rusch, B.K. Leong, and S. Laskin, Benzene Metabolism, J. Toxicol. Environ. Health Suppl 2:23 (1977).Google Scholar
  8. 8.
    L. Gonasun, C. M. Witmer, J. Kocsis, and R. Snyder, Benzene metabolism in mouse liver metabolism, Toxicol. Appl. Pharmacol. 26:398 (1973).PubMedCrossRefGoogle Scholar
  9. 9.
    D. Jerina, J. Daley, B. Witkop, P. Zaltzman-Nirenberg and S. Udenfriend, Role of arene oxide-oxepin system in the metabolism of aromatic substrates. I. In vitro conversion of benzene oxide to premercapturic acid and dihydrodiol, Arch. Biochem. Biophys. 128:176 (1968).CrossRefGoogle Scholar
  10. 10.
    A. Tunek, K. Platt, P. Bentley, and F. Oesch, Microsomal metabolism of benzene to species irreversibly binding to microsomal protein and the effects of modification of this metabolism, Molec. Pharmacol. 14:920 (1978).Google Scholar
  11. 11.
    T. Sawahata and R. Neal, Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes, Mo1. Pharmaco1. 23:453 (1983).Google Scholar
  12. 12.
    S. Gilmour, G. Kalf, and R. Snyder, Comparison of the metabolism of benzene and its metabolite phenol in rat liver microsomes in “Biological Reactive Intermediates III: Mechanisms of Action in Animal Models and Human Diseases”, J.J. Kocsis, D.J. Jollow, C.M. Witmer, J.O. Nelson, and R. Snyder eds., Plenum Press, New York (1986), p. 223.Google Scholar
  13. 13.
    K. Nomiyama, Studies on the poisoning by benzene and its homologues. Oxidation rate of benzene and benzene poisoning, Med. J. Shinshu. Univ. 7:41 (1962).Google Scholar
  14. 14.
    R. Snyder, L.S. Andrews, E.W. Lee, C.M. Witmer, M. Reilly, and J.J. Kocsis, Benzene metabolism and toxicity in “Biological Reactive Intermediates”, D.J. Jollow, J.J. Kocsis, R. Snyder, H. Vainio, Plenum Press, New York (1977), p.286.CrossRefGoogle Scholar
  15. 15.
    D. Sammet, E. Lee, J.J. Kocsis, and R. Snyder, Partial heptatectomy reduces both metabolism and toxicity of benzene, J. Toxicol.. Environ. Health. 5:785 (1979).CrossRefGoogle Scholar
  16. 16.
    R. Snyder, F. Uzuki, L. Gonasun, E. Bromfeld, and A. Wells, The metabolism of benzene in vitro. Toxicol. Appl. Pharmacol. 11:346 (1967).CrossRefGoogle Scholar
  17. 17.
    J.J. Kocsis, S. Harkaway, M.C. Santoyo, and R. Snyder, Dimethyl sulfoxide: Interactions with aromatic hydrocarbons, Science 160:427 (1968).PubMedCrossRefGoogle Scholar
  18. 18.
    W.F. Greenlee, E.A. Gross, and R.D. Irons, Relationship between benzene toxicity and disposition of 14C-labeled benzene metabolites in the rat, Chem. Biol. Interact. 33:285 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    R. Irons, J. Dent, T. Baker, and D. Rickert, Benzene is metabolized and covalently bound in bone marrow in situ, Chem. Biol. Interact. 30:241 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    L. Andrews, H. Sasame, and J.R. Gillette, 3H-benzene metabolism in rabbit bone marrow, Life Sci. 25(7): 567 (1979).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Ingelman-Sundberg and A.L. Hagbjork, On the significance of the cytochrome P-450-dependent hydroxyl radical-mediated oxygenation mechanism.Google Scholar
  22. 22.
    I. Johansson and M. Ingelman-Sundberg, Hydroxyl radical-mediated, cytochrome P-450-dependent metabolic activation of benzene in microsomes and reconstituted enzyme systems from rabbit liver. J. Biol. Chem. 258:7311 (1983).PubMedGoogle Scholar
  23. 23.
    L.D. Gorsky and M.J. Coon, Evaluation of the role of free hydroxyl radicals in the cytochrome P-450-catalyzed oxidation of benzene and cyclohexanol, Drug Metab. Disp. 13:169 (1985).Google Scholar
  24. 24.
    F.U. Saito, J.J. Kocsis, and R. Snyder, Effect of benzene on hepatic drug metabolism and ultra struc ture. Toxicol. Appl. Pharmacol. 26:209 (1973).PubMedCrossRefGoogle Scholar
  25. 25.
    G.B. Post and R. Snyder, Effect of enzyme induction on microsomal benzene metabolism, J. Toxicol. Environ. Health. 11:811 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    G.B. Post and R. Snyder, Fluoride stimulation of microsomal benzene metabolism, J. Toxicol. Environ. Health. 11:799 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    P. Baune, J. Flinois, E. LePrevost, and J. Leroux, Influence of ethanol and benzene on cytochrome P-450 fractions in rat liver microsomes, Drug Metab. Dispos. 11:499 (1983).Google Scholar
  28. 28.
    I. Johansson and M. Inge Lman-Sundberg, Benzene metabolism by ethanol-, acetone-, and benzene-inducible cytochrome P-450 (IIE1) in rat and rabbit liver microsomes, Cancer Res. 48:5387 (1988).PubMedGoogle Scholar
  29. 29.
    D.R. Koop, C.L. Laethem, and G.G. Schnier, Identification of ethanol-indueible P-450 isozyme 3a (P-450IIE1) as a benzene and phenol hydroxylase, Toxicol. Appl. Pharmacol. 98:278 (1989).PubMedCrossRefGoogle Scholar
  30. 30.
    T.A. Chepiga, C.S. Yang, and R. Snyder, Benzene metabolism by two purified, reconstituted rat hepatic mixed function oxidase systems, Toxicologist 10(1):128 (1990).Google Scholar
  31. 31.
    B.D. Goldstein, G. Witz, J. Javid, M. Amoruso, T. Rossman, and B. Wolder, Muconaldehyde, a potential toxic intermediate of benzene metabolism in “Biological Reactive Intermediates II. Part A”, R. Snyder, D.V. Parke, J.J. Kocsis, D. Jollow, G.G. Gibson, and C.M. Witmer, Eds., Plenum Press, New York, 1982, p. 331.Google Scholar
  32. 32.
    L. Latriano, B.D. Goldstein, and G. Witz, Formation of muconaldehyde, an open-ring metabolite of benzene, in mouse liver microsomes: an additional pathway for toxic metabolites, Proc. Natl. Acad. Sci. 83:8356 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    T.A. Kirley, B.D. Goldstein, W.M. Maniara, and G. Witz, Metabolism of trans,trans-muconaldehyde, a microsomal hematotoxic metabolite of benzene, by purified yeast aldehyde dehydrogenase and a mouse liver soluble fraction, Toxicol. Appl. Pharmacol. 100:360 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    D. Ross, P. Holzner, and D.R. Petersen, Hepatic metabolism and toxicity of trans-trans muconaldehyde, Toxicologist 10(1):185 (1990).Google Scholar
  35. 35.
    R. Snyder, E.W. Lee, and J.J. Kocsis, Binding of labeled benzene metabolites to mouse liver and bone marrow, Res. Comm. Chem. Pathol. Pharmacol. 20(1): 191 (1978).Google Scholar
  36. 36.
    S. Longacre, J. Kocsis, and R. Snyder, Influence of strain differences in mice on the metabolism and toxicity of benzene, Toxicol. Appl. Pharmacol. 60:398 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    H. Wallin, P. Melin, C. Schelin, and B. Jergil, Evidence that covalent binding of metabolically activated phenol to microsomal proteins is caused by oxidized products of hydroquinone and catechol, Chem. Biol. Interact. 55:335 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    R.C. Smart and V.G. Zannoni, DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene, Mol. Pharmacol. 26:105 (1984).PubMedGoogle Scholar
  39. 39.
    M.J. Schlosser, R.D. Shurina, and G.F. Kalf, Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthetase, Environ. Health Perspect. 82:229 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    R.C. Smart and V.G. Zannoni, Effect of ascorbate on covalent binding of benzene and phenol metabolites to isolated tissue preparations, Toxicol. Appl. Pharmacol. 77:334 (1985)PubMedCrossRefGoogle Scholar
  41. 41.
    B. Wermuth, K. Platts, A. Seidel, and F. Oesch, Carbonyl reductase provides the enzymatic basis of quinone reduction in man, Biochem. Pharmacol. 35:1277 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Robert Snyder
    • 1
  • Suzanne Pirozzi Chatterjee
    • 1
  1. 1.Department of Toxicology and PharmacologyRutgers The State University of New JerseyPiscatawayUSA

Personalised recommendations