Role of Cytochrome P - 450 in the Anabolism and Catabolism of Endobiotics

  • Hugo Vanden Bossche
  • Henri Moereels
  • Paul A. J. Janssen
Part of the NATO ASI Series Advanced Science Institutes Series book series (NSSA, volume 202)


Estabrook et al.(l) demonstrated for the first time the participation of a cytochrome P-450 (P450) in the metabolism of endobiotics by proving its role in the steroid C21-hydroxylation reaction, catalyzed by adrenal cortex microsomes. They found that the 21-hydroxylation of 17-hydroxyprogesterone required NADPH and oxygen and was inhibited by carbon monoxide. Furthermore, spectrophotometric measurements showed the presence of an absorption band at 450nm when CO was added to adrenal cortex microsomes reduced with NADPH (1). This study paved the way for innumerable biochemical and endocrinological studies. Now, some 2 6 years later, a wealth of information is available on the involvement of P450 isozymes in the synthesis of endobiotics in yeasts, fungi, protozoa, plants, invertebrates and vertebrates. Examples of some cellular biosynthetic reactions in which P450 enzymes are essential are listed in Table 1. The metabolism of a wide variety of endogenous compounds is also dependent on P450. Examples are shown in Table 2.


Bile Acid Retinoic Acid Adrenal Cortex Congenital Adrenal Hyperplasia Bile Acid Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.W. Estabrook, D.Y. Cooper and O. Rosenthal, The light reversible carbon monoxide inhibition of the steroid C21-hydroxylase system of the adrenal cortex, Biochem. Zeitsch. 338: 741–755 (1963)Google Scholar
  2. 2.
    D.W. Nebert, D.R. Nelson and R. Feyereisen, Evolution of cytochrome P450 genes, Xenobiotica 19: 1149–1160 (1989)PubMedGoogle Scholar
  3. 3.
    D.W. Nebert, D.R. Nelson, M. Adesnik, M.J. Coon, R.W. Estabrook, F. J. Gonzalez, F.P. Guengerich, I.C. Gunsalus, E.F. Johnson, B. Kemper, W. Levin, I.R. Phillips, R. Sato and M.R. Waterman, The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci, DNA 8: 1–13 (1989)PubMedGoogle Scholar
  4. 4.
    J. Trzaskos, S. Kawata and J.L. Gaylor, Microsomal enzymes of cholesterol biosynthesis. Purification of lanosterol 14α-methyl demethylase cytochrome P-450 from hepatic microsomes, J. Biol. Chem. 261: 14651–14657 (1986)PubMedGoogle Scholar
  5. 5.
    Y. Yoshida, Cytochrome P450 of fungi: primary target for azole antifungal agents, in: “Current topics in medical mycology”, Vol.2, M.R. McGinnis, ed., Springer Verlag, New York (1988)Google Scholar
  6. 6.
    J.M. Trzaskos, M.F. Favata, R.T. Fischer and S.H. Stam, In situ accumulation of 3S-hydroxylanost-8-en-32-aldehyde in hepatocyte cultures. A putative regulator of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase activity, J. Biol. Chem. 262: 12261–12268 (1987)PubMedGoogle Scholar
  7. 7.
    H. Boström and K. Wikvall, Hydroxylations in biosynthesis of bile acids. Isolation of subfractions with different substrate specificity from cytochrome P450LM4, J. Biol. Chem. 257: 11755–11759 (1982)PubMedGoogle Scholar
  8. 8.
    R. Hansson and K. Wikvall, Purification and properties of cholesterol 7α-hydroxylase, in: “Cholesterol 7α-hydroxylase (7α-mono-oxygenase)” R. Fears and J.R. Sabine eds., CRC PRESS, INC., Boca Raton, Florida (1986)Google Scholar
  9. 9.
    S. Anderson, D.L. Davis, H. Dahlbäck, H. Jörnvall and D.W. Russell, Cloning structure and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid bio-synthetic enzyme, J. Biol. Chem. 264: 8222–8229 (1989)Google Scholar
  10. 10.
    H. Postlind and K. Wikvall, Evidence for the formation of 26-hydroxycholesterol by cytochrome P-450 in pig kidney mitochondria, Biochem. Biophys. Res. Commun. 159: 1135–1140 (1989)PubMedGoogle Scholar
  11. 11.
    C. Larroque, R. Lange, P. Maurel, R. Langlois and J.E. van Lier, Rat liver microsomal progesterone metabolism: evidence for differential troleandomycin and pregnenolone 16α-carbonitrile inductive effects in the cytochrome P-450 III family, J. steroid. Biochem. 33: 277–286 (1989)PubMedGoogle Scholar
  12. 12.
    E.F. Johnson, G.E. Schwab and L.E. Vickery, Positive effectors of the binding of an active site-directed amino steroid cytochrome P-4503c, J. Biol. Chem. 263: 17672–17677 (1988)PubMedGoogle Scholar
  13. 13.
    C. L. Potenza, U.R. Pendurthi, D.K. Strom, R.H. Tukey, K.J. Griffin, G. E. Schwab and E.F. Johnson, Regulation of the rabbit cytochrome P-450 3c gene. Age-dependent expression and transcriptional activation by rifampicin, J. Biol. Chem. 264: 16222–16228 (1989)PubMedGoogle Scholar
  14. 14.
    D.J. Waxman, C. Attisano, F.P. Guengerich and D.P. Lapenson, Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6ß-hydroxylase cytochrome P-450 enzyme, Archiv. Biochem. Biophys. 263: 424–436 (1988)Google Scholar
  15. 15.
    N. Harada and M. Negishi, Substrate specificities of cytochrome P-450, C-P-45016α and P-45015α and contribution to steroid hydroxylase activities in mouse liver microsomes, Biochem. Pharmacol. 37: 4778–4780 (1988)PubMedGoogle Scholar
  16. 16.
    R. Lindberg, B. Burkhart, T. Ichikawa and M. Negishi, The structure and characterization of type I P-45015α gene major steroid 15ß-hydroxylase and its comparison with Type II P-45015α gene, J. Biol. Chem. 264: 6465–6471 (1989)PubMedGoogle Scholar
  17. 17.
    G.E. Schwab, J.L. Raucy and E.F. Johnson, Modulation of rabbit and human hepatic cytochrome P-450-catalyzed steroid hydroxylations by α-naphthoflavone, Mol. Pharmacol. 33: 493–499 (1988)PubMedGoogle Scholar
  18. 18.
    D. J. Waxman, A. Ko and C. Walsh, Regioselectivity and stereo-selectivity of androgen hydroxylations catalyzed by cytochrome P-450 isozymes purified from phenobarbital-induced rat liver, J. Biol. Chem. 258: 11937–11947 (1983)PubMedGoogle Scholar
  19. 19.
    D.E. Ryan, S. Iida, A.W. Wood, P.E. Thomas, C. S. Lieber and W. Levin, Characterization of three highly purified cytochromes P-450 from hepatic microsomes of adult male rats, J. Biol. Chem. 259: 1239–1250 (1984)PubMedGoogle Scholar
  20. 20.
    M. Sundin, M. Warner, T. Haaparanta and J.-Å. Gustafsson, Isolation and catalytic activity of cytochrome P-450 from ventral prostate of control rats, J. Biol. Chem. 262: 12293–12297 (1987)PubMedGoogle Scholar
  21. 21.
    M. Wagner, M. Stromstedt, L. Möller and J.-Å. Gustafsson, Distribution and regulation of 5α-androstane-3ß, 17ß-diol hydroxylase in the rat central nervous system, Endocrinology 124:2699–2706 (1989)Google Scholar
  22. 22.
    T. Haaparanta, H. Glaumann and J.-Å. Gustafsson, Characterization and endocrine regulation of the cytochrome P-450 dependent microsomal hydroxylation of 5α-androstane-3ß, 17ßdiol in the rat ventral prostate, Endocrinology 114: 2293–2300 (1984)PubMedGoogle Scholar
  23. 23.
    R. J. Soberman, J. P. Sutyak, R.T. Okita, D.F. Wendelborn, L.J. Roberts and K.F. Austen, (1988) The identification and formation of 20-aldehyde leukotriene B4, J. Biol. Chem. 263: 7996–8002 (1988)PubMedGoogle Scholar
  24. 24.
    H. Vanden Bossche, G. Willemsens, P.A.J. Jannsen, (1988) Cytochrome P-450-dependent metabolism of retinoic acid in rat skin microso-mes: inhibition by ketoconazole, Skin Pharmacol 1: 176–185 (1988)Google Scholar
  25. 25.
    J.M. Trzaskos, W.D. Bowen, A. Shafiee, R.T. Fischer and J.L. Gaylor, Cytochrome P-450-dependent oxidation of lanosterol in cholesterol biosynthesis. Microsomal electron transport and C-32 demethylation, J. Biol. Chem. 259: 13402–13412 (1984)PubMedGoogle Scholar
  26. 26.
    D. Pompon, cDNA cloning and functional expression in yeast Saccharomyces cerevisiae of ß-naphthoflavone-induced rabbit liver P-450LM4 and LM6, Eur. J. Biochem. 177: 285. (1988)PubMedGoogle Scholar
  27. 27.
    H. Vanden Bossche, Mode of action of Pyridine, pyrimidine and azole antifungals, in: “Sterol biosynthesis inhibitors. Pharmaceutical and agrochemical aspects”, D. Berg and M. Plempel, eds., Ellis Horwood, Chichester, England (1988)Google Scholar
  28. 28.
    M.H. Lai and D.R. Kirsch, Nucleotide sequence oc cytochrome P450LIA1 (lanosterol 14α-demethylase) from Candida albicans, Nucleic Acids Res., 17: 804 (1989)PubMedGoogle Scholar
  29. 29.
    C. Chen, V. F. Kalb, V. F., T. G. Turi and J. C. Loper, Primary structure of the cytochrome P-450 lanosterol 14α-demethylase gene from Candida tropicalis, DNA, 7: 617–626 (1988)PubMedGoogle Scholar
  30. 30.
    V.F. Kalb, J. C. Loper, C. R. Dey, C. W. Woods and T. R. Sutter, Isolation of a cytochrome P-450 structural gene from Saccharomyces cerevisiae, Gene, 45: 237–245 (1986)PubMedGoogle Scholar
  31. 31.
    V, F. Kalb, C. W. Woods, T. G. Turi, C. R. Dey, T.R. Sutter and L.C. Loper, Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae, DNA, 6: 529–537 (1988)Google Scholar
  32. 32.
    N.Y. Ishida, Y. Aoyama, R. Hatanaka, Y. Oyama, S. Imajo, M. Ishiguro, T. Oshima, H. Nakazato, T. Noguchi, U.S. Maitra, V.P. Mohan, D.B. Sprinson, and Y. Yoshida, A single amino acid substitution converts cytochrome P45014 DM to an inactive form, cytochrome P450sG1: complete primary structures deduced from cloned DNAs, Biochem. Biophys. Res. Commun.: 155: 317–323 (1988)PubMedGoogle Scholar
  33. 33.
    H. Vanden Bossche, P. Marichal, J. Gorrens, M.-C. Coene, G. Willemsens, D. Bellens, I. Roels, H. Moereels and P.A.J. Janssen, Biochemical approaches to selective antifungal activity. Focus on azole antifungals, Mycoses, in pressGoogle Scholar
  34. 34.
    Y. Yoshida, Y. Aoyama, T. Nishino, H. Katsuki, U.S. Maitra, V. P. Mohan and D. B. Sprinson, Spectral properties of a novel cytochrome P-450 of a Saccharomyces cerevisiae mutant SG1. A cytochrome P-450 species having a nitrogenous ligand trans to thiolate. Biochem. Biophys. Res. Commun. 127: 623–628 (1985)PubMedGoogle Scholar
  35. 35.
    P.F. Watson, M.E. Rose and S.L. Kelly, Isolation and analysis of ketoconazole resistant mutants of Saccharomyces cerevisiae, J. Med. Vet. Mycol. 26: 153–162 (1988)PubMedGoogle Scholar
  36. 36.
    H.W. Chen, D.A. Leonard, R.T. Fischer and J.M. Trzaskos, A mammalian mutant cell lacking detectable lanosterol 14α-methyl demethylase activity, J. Biol. Chem. 263: 1248–1254 (1988)PubMedGoogle Scholar
  37. 37.
    W.L. Miller, Molecular biology of steroid hormone synthesis, Endocrine Rev. 9: 295–318 (1988)Google Scholar
  38. 38.
    M.R. Waterman, M.E. John and E.R. Simpson, Regulation of synthesis and activity of cytochrome P-450 enzymes in phydsiological pathways, in: “Cytochrome P-450. Structure, Mechanism, and Function”, Ortiz de Montellano, Ed., Plenum Press, New York (1986)Google Scholar
  39. 39.
    M. Tsubaki, A. Hiwatashi, Y. Ichikawa, Y. Fujimoto, N. Ikekawa and H. Hori, Electron paramagnetic resonance study of ferrous cytochrome P-450scc-nitric oxide complexes: Effects of 20(R),22(R) dihydrocholesterol and reduced adrenodoxin, Biochemistry 27: 4856–4862 (1988)PubMedGoogle Scholar
  40. 40.
    B.-C. Chung, K.J. Matteson, R. Voutilaine, T.K. Mohandas and W.L. Miller, Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta, Proc. Natl. Acad. Sci. USA, 83: 8962–8966 (1986)PubMedGoogle Scholar
  41. 41.
    K.M. McMasters, L.A. Dickson, R.V. Shamy, K. Robischon, G.J. Macdonald and W.R. Moyle, Rat cholesterol side-chain cleavage enzyme (P-450scc) use of a cDNA probe to study the hormonal regulation of P-450scc mRNA levels in ovarian granulosa cells, Gene 57: 1–9 (1987)PubMedGoogle Scholar
  42. 42.
    C. Le Goascogne, N. Sananès, M. Gouezou, E.E. Baulieu and P. Robel, Cell-specific variations and hormonal regulation of immunoreactive cytochrome P-450scc in the rat ovary, J. Reprod. Fert. 85: 61–72 (1989)Google Scholar
  43. 43.
    Y. Ichikawa and A. Hiwatashi, The role of the sugar regions of components of the P-450-linked mixed-function oxidase (monooxygenase) system of bovine adrenocortical mitochondria, Biochim. Biophys. Acta 705: 82. (1982)PubMedGoogle Scholar
  44. 44.
    M. Tsubaki, Y. Iwamoto, A. Hiwatashi and Y. Ichikawa, Inhibition of electron transfer from adrenodoxin to cytochrome P-450scc by chemical modification with pyridoxal 5′-phosphate: identification of adrenodoxin-binding site of cytochrome P-450scc, Biochemistry 28: 6899–6907 (1989)PubMedGoogle Scholar
  45. 45.
    K. Morohashi, Y. Fugii-Kuriyama, Y. Okada, K. Sogawa, T. Hirose, S. Inayama and T. Omura, Molecular cloning and nucleotide sequence of cDNA for mRNA of mitochondrial cytochrome P-450 (SCC) of bovine adrenal cortex, Proc. Natl. Acad. Sci. USA 81: 4647–4651 (1984)PubMedGoogle Scholar
  46. 46.
    Y. Iwamoto, M. Tsubaki, A. Hiwatashi and Y. Ichikawa, Crystallization of cytochrome P-450scc from bovine adrenocortical mitochondria, FEBS Lett. 233: 31–36 (1988)PubMedGoogle Scholar
  47. 47.
    K. Yanagibashi, M. Haniu, J.E. Shively, W.H. Shen and P. Hall, The synthesis of aldosterone by the adrenal cortex. Two zones (fasciculata and glomerulosa) possess one enzyme for 11ß-, 18-hydroxylation and aldehyde synthesis, J. Biol. Chem. 261, 3556–3562 (1986)PubMedGoogle Scholar
  48. 48.
    T.D. Drummond, J.I. Mason, J.L. McCarthy (1988) Gerbil adrenal 11ß-and 19-hydroxylating activities respond similarly to inhibitory or stimulatory agents: two activities of a single enzyme. J. Steroid Biochem. 29: 641–648 (1988)PubMedGoogle Scholar
  49. 49.
    K. Suhara, K. Ohashi, K. Takahashi and M. Katagiri, Aromatase and nonaromatizing 10-demethylase activity of adrenal cortex mitochondrial P-45011ß., Archiv. Biochem. Biophys. 267: 31–37 (1988)Google Scholar
  50. 50.
    T. Ogishima, F. Mitani and Y. Ishimura, Isolation of aldosterone synthase cytochrome P-450 from zona glomerulosa mitochondria of rat adrenal cortex, J. Biol. Chem. 264: 10935–10938 (1989)PubMedGoogle Scholar
  51. 51.
    S. Kirita, K.-I. Morohashi, T. Hashimoto, H. Yoshioka, Y. Fujii-Kuriyama and T. Omura, Expression of two kinds of cytochrome P-450 (11ß) mRNA in bovine adrenal cortex, J. Biochem 104: 683–686 (1988)PubMedGoogle Scholar
  52. 52.
    T. Ogishima, F. Mitani, Y. Ishimura, Isolation of two distinct cyto-chromes P-45011ß with aldosterone synthase activity from bovine adrenocortical mitochondria, J. Biochem., 105: 497–499 (1989)PubMedGoogle Scholar
  53. 53.
    H. Globerman, A. Rösier, R. Theodor, M.I. New and P. C. White, An inherited defect in aldosterone biosynthesis caused by a mutation in or near the gene for steroid 11-hydroxylase, N. Eng. J. Mad., 319: 1193–1197 (1988)Google Scholar
  54. 54.
    S.C. Chua, P. Szabo, A. Vitek, K.-H. Grzeschik, M. John and P.C. White, Cloning of cDNA ancoding steroid 11ß-hydroxylase (P450c11). Proc. Natl. Acad. USA 84: 7193–7197 (1987)Google Scholar
  55. 55.
    Y. Nonaka, N. Matsukawa, K.-I. Morohashi, T. Omura, T. Ogihara, H. Teraoka and M. Okamoto, Molecular cloning and sequence analysis of cDNA encoding rat adrenal cytochrome P-45011ß, FEBS Lett. 255: 21–26 (1989)PubMedGoogle Scholar
  56. 56.
    M.X. Zuber, M.E. John, T. Okamura, E.R. Simpson, and M.R. Waterman, Bovine adrenocortical cytochrome P-45017α, regulation of gene expression by ACTH and elucidation of primary sequence, J. Biol. Chem. 261: 2475–2482 (1986)PubMedGoogle Scholar
  57. 57.
    M. Namiki, M. Kitamura, E. Buczko and M.L. Dufau, Rat testis P-45017α cDNA: the deduced amino acid sequence, expression and secondary structural configuration, Biochem. Biophys. Res. Commun. 157: 705–712 (1988)PubMedGoogle Scholar
  58. 58.
    R.J. Edwards, B.P. Murray, A.R. Boobis and D.S. Davies, Identification and location of α-helices in mammalian cytochromes P-450, Biochemistry 28: 3762–3770 (1989)PubMedGoogle Scholar
  59. 59.
    T.L. Poulos, B.C. Finzel, I.C. Gunsalus, G.G. Wagner and J. Kraut, The 2.6-Å crystal structure of Pseudomonasputida cytochrome P-450, J. Biol. Chem. 260: 16122–16130 (1985)PubMedGoogle Scholar
  60. 60.
    T.L. Poulos, B.C. Finzel and A.J. Howard, High-resolution crystal structure of cytochrome P450CAM, J. Biol. Chem. 195: 687–700 (1987)Google Scholar
  61. 61.
    B.-C. Chung, J. Picado-Leonard, M. Haniu, M. Bienkowski, P.F. Hall, J. E. Shively and W. L. Miller, Cytochrome P450c17 (steroid 17α-hydroxylase/17, 20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues, Proc. Natl. Acad. Sci. USA 84: 407–411 (1987)PubMedGoogle Scholar
  62. 62.
    H. Sasano, J.I. Mason and N. Sasano, Immunohistochemical analysis of cytochrome P-450 17α-hydroxylase in pig adrenal cortex, testis and ovary, Mol. Cell. Endocrinol. 62: 197–202 (1989)PubMedGoogle Scholar
  63. 63.
    S.A. Tonetta and M. Hernandez, Modulation of 17α-hydroxylase/ C17,20-lyase activity in porcine theca cells, J. steroid. Biochem. 33: 263–270 (1989)PubMedGoogle Scholar
  64. 64.
    S. Nakajin, Shively, P.-M. Yuan and P.F. Hall, Microsomal cytochrome Pα-450 from neonatal pig testis: two enzymatic activities (17α-hydroxylase/C17, 20-lvase) associated with one protein, Biochemistry 20: 4037–4042 (1981)PubMedGoogle Scholar
  65. 65.
    S. Kominami, K. Shinzawa and S. Takemori, Purification and some properties of cytochrome P-450 specific for steroid 17α-hydroxy-lation and C17-C20 bond cleavage from guinea pig adrenal microsomes, Biochem. Biophys. Res. Commun. 109: 916–921 (1982)PubMedGoogle Scholar
  66. 66.
    S. Nakajin, M. Shinoda, M. Haniu, J.E. Shively and P.F. Hall, C21 steroid side chain cleavage enzyme from porcine adrenal microsomes. Purification and characterization of the 17α-hydroxylase/C17, 20-1yase cytochrome P-450, J. Biol. Chem. 259: 3971–3976 (1984)PubMedGoogle Scholar
  67. 67.
    M.X. Zuber, E.R. Simoson and M.R. Waterman, Expression of bovine 17α-hydroxylase cytochrome P-450 cDNA in nonsteroidogenic (COS 1) cells, Science 234: 1258–1261 (1986)PubMedGoogle Scholar
  68. 68.
    C.R. Bhasker, B.S. Adler, A. Dee, M. E. John, M. X. Zuber, R. Ahlgren, X. Wang, E.R. Simpson and M.R. Waterman, Structural characterization of the bovine CYP17 (17α-hydroxylase) gene, Archiv. Biochem. Biophys. 271: 479–487 (1989)Google Scholar
  69. 69.
    H.R. Fevold, M.C. Lorence, J. L. McCarthy, J.M. Trant, M. Kagimoto, M. R. Waterman and J.I. Mason, Rat P45017, from testis: characterization of a full-lenght cDNA encoding a unique steroid hydroxylase capable of catalyzing both Δ4-and Δ5-steroid-17, 20-lyase reactions, MOl. Endocrinol. 3: 968–975 (1989)PubMedGoogle Scholar
  70. 70.
    M. Kagimoto, J.S.D. Winter, K. Kagimoto, E.R. Simpson and M.R. Waterman, Structural characterization of normal and mutant human steroid 17α-hydroxylase genes: molecular basis of one example of combined 17ß-hydroxylase/17, 20 lyase deficiency, Mol. Endocrinol. 2: 564–570 (1988)PubMedGoogle Scholar
  71. 71.
    H. Ono, M. Iwasaki, N. Sakamoto and S. Mizuno, cDNA cloning and sequence analysis of a chicken gene expressed during the gonadal development and homologous to mammalian cytochrome P-450cl7, Gene 66: 77–85 (1988)PubMedGoogle Scholar
  72. 72.
    K. L. Parker, B.P. Schimmer, D.D. Chaplin and J.G. Seidman, Characterization of a regulatory region of the steroid 21-hydroxylase gene, J. Biol. Chem. 261: 15353–15355 (1986)PubMedGoogle Scholar
  73. 73.
    M. Haniu, K. Yanagibashi, P. F. Hall and J. E. Shively, Complete amino acid sequence of 21-hydroxylase cytochrome P-450 from porcine adrenal microsomes, Arch. Biochem. Biophys. 254: 380–384 (1987)PubMedGoogle Scholar
  74. 74.
    Y. Higashi, H. Yoshioka, M. Yamane, O. Gotoh and Y. Fujii-Kuriyama, Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene, Proc. Natl. Acad. Sci. USA 83: 2841–2845 (1986)PubMedGoogle Scholar
  75. 75.
    H. Yoshioka, K.-I. Morohashi, K. Sogawa, M. Yamane, S. Kominami, S. Takemori, Y. Okada, T. Omura and Y. Fujii-Kuriyama, Structural analysis of cloned cDNA for mRNA of microsomal cytochrome P-450 (C21) which catalyzes steroid 21-hydroxylation in bovine adrenal cortex, J. Biol. Chem. 261: 4106–4109 (1986)PubMedGoogle Scholar
  76. 76.
    D.D. Chaplin, L.J. Galbraith, J.G. Seidman, P.C. White and K.L. Parker, Nucleotide sequence analysis of murine 21-hydroxylase genes: mutations affecting gene expression, Proc. Natl. Acad. Sci. USA 83: 9601–9605 (1986)PubMedGoogle Scholar
  77. 77.
    Y. Higashi, A. Tanae, H. Inoue, T. Hiromasa and Y. Fujii-Kuriyama, Aberrant splicing and missense mutations cause steroid 21-hydroxylase [P-450 (C21) ] deficiency in humans: possible gene conversion products, Proc. Natl. Acad. Sci. USA 85: 7486–7490 (1988)PubMedGoogle Scholar
  78. 78.
    J.T. Kellis and L.E. Vickery, The active site of aromatase cytochrome P-450. Differential effects of cyanide provide evidence for proximity of heme-iron and carbon-19 in the enzyme-substrate complex, J. Biol. Chem. 262: 8840–8844 (1987)PubMedGoogle Scholar
  79. 79.
    G. J. Hickey, S. Chen, M. J. Besman, J. E. Shively, P. F. Hall, D. Gaddy-Kurten and J.S. Richards, Hormonal regulation, tissue distribution, and content of aromatase cytochrome P450 messenger ribonucleic acid and enzyme in rat ovarian follicles and corpora lutea: relationship to estradiol biosynthesis, Endocrinology 122: 1426–1436 (1988)PubMedGoogle Scholar
  80. 80.
    C. J. Newton, D.L. Samuel and V.H.T. James, Aromatase activity and concentrations of cortisol, progesterone and testosterone in breast and abdominal adipose tissue, J. Steroid. Biochem. 24: 1033–1039 (1986)PubMedGoogle Scholar
  81. 81.
    C.R. Mendelson, J.C. Merrill, M.P. Steinkampf and E.R. Simpson, Regulation of the synthesis of aromatase cytochrome P-450 in human adipose stromal and ovarian granulosa cells, Steroids 50: 51–59 (1987)PubMedGoogle Scholar
  82. 82.
    D.W. Killinger, E. Pewrel, D. Daniilescu, L. Kharlip and M.E. Blackstein, Aromatase activity in the breast and other peripheral tissues and its therapeutic regulation, Steroids 50:523–536 (1987)PubMedGoogle Scholar
  83. 83.
    M. Fujimoto, G. D. Berkovitz, T.R. Brown and C. J. Migeon, Time-dependent biphasic response of aromatase to dexamethasone in cultured human skin fibroblasts, J. Clin. Endocrinol. Met. 63: 468–474 (1986)Google Scholar
  84. 84.
    A. Chabab, J.-C. Nicolas and C. Sultan, Aromatase activity in human skin fibroblasts: characterization by an enzymatic method, J. steroid. Biochem. 25: 157–163 (1986)PubMedGoogle Scholar
  85. 85.
    N.J. MacLusky, A.S. Clark, F. Naftolin and P.S. Goldman-Rakic, Estrogen formation in the mammalian brain: possible role of aromatase in sexual differentation of the hippocampus and neocortex, Steroids 50:459–474 (1987)PubMedGoogle Scholar
  86. 86.
    J.T. Kellis Jr. and L.E. Vickery, Purification and characterization of human placental aromatase cytochrome P-450, J. Biol. Chem. 262: 4413–4420 (1987)PubMedGoogle Scholar
  87. 87.
    P.F. Hall, S. Chen, S. Nakajin, M. Shinoda and J.E. Shively, Purification and characterization of aromatase from human placenta, Steroids 50: 37–49 (1987)PubMedGoogle Scholar
  88. 88.
    D.D. Hagerman, Human placenta estrogen synthetase (aromatase) purified by affinity chromatography, J. Biol. Chem. 262: 2398–2400 (1987)PubMedGoogle Scholar
  89. 89.
    Y. Kaburagi, M.B. Marino, R.Y. Kirdani, J.P. Greco, J.P. Karr and A.A. Sandberg, The possibility of aromatization of androgen in human prostate, J. steroid Biochem. 26: 739–742 (1987)PubMedGoogle Scholar
  90. 90.
    S.A. Marts, G.M. Padilla and V. Petrow, Aromatase activity in microsomes from rat ventral prostate and Dunning R3327H rat prostatic adenocarcinoma, J. steroid Biochem. 26: 25–29 (1987)PubMedGoogle Scholar
  91. 91.
    L. Tseng, J. Mazella, M.I Funt, W.J. Mann and M.L. Stone, Preliminary studies of aromatase in human neoplastic endometrium, Obstet. Gynecol. 63: 150–154, 1984.PubMedGoogle Scholar
  92. 92.
    V.H.T. James, J.M. McNeill, L.C. Lai, C.J. Newton, M.W. Ghilchik, and M.J. Reed, Aromatase activity in normal breast tumor tissues: in vivo and in vitro studies, Steroids 50: 270–279 (1987)Google Scholar
  93. 93.
    R.J. Santen, Potential clinical role of new aromatase inhibitors, Steroids 50, 575–593 (1987)PubMedGoogle Scholar
  94. 94.
    W.R. Miller and J. O’Neill, The importance of local synthesis of estrogen within the breast, Steroids 50: 537–548 (1987)PubMedGoogle Scholar
  95. 95.
    M.J. McPhaul, J.F. Noble, E.R. Simpson, C.R. Mendelson and J.D. Wilson, The expression of a functional cDNA encoding the chicken cytochrome P-450arom (aromatase) that catalyzes the formation of estrogen from androgen, J. Biol. Chem. 263: 16358–16363 (1988)PubMedGoogle Scholar
  96. 96.
    C.J. Corbin, S. Graham-Lorence, M. McPhaul, J.I. Mason, C.R. Mendelson and E.R. Simpson, Isolation of a full-lenght cDNA insert encoding human aromatse system cytochrome P-450 and its expression in nonsteroidogenic cells, Proc. Natl. Acad. Sci. USA 85: 8948–8952 (1988)PubMedGoogle Scholar
  97. 97.
    D. Pompon, R.Y.-K. Liu, M.J. Besman, P.-L. Wang, J.E. Shively and S. Chen, Expression of human placental aromatase in Saccharomyces cerevisiae, Mol. Endo. 3:1477–1487 (1989)Google Scholar
  98. 98.
    C. F. Wilkinson, Role of mixed-function oxidase in insect growth and development, in: “Bioregulators for pest control”, P.A. Hedin, ed., American Chemical Society, Washington, D.C. (1985)Google Scholar
  99. 99.
    J. Srivatsan, T. Kuwahara and M. Agosin, The effect of alpha-ecdy-sone and phenobarbital on the alpha-ecdysone 20-monoooxyenase of house fly larva. Biochem. Biophys. Res. Commun. 148: 1075–1080 (1987)PubMedGoogle Scholar
  100. 100.
    F.A. Fitzpatrick and R.C. Murphy, Cytochrome P-450 metabolism of arachidonic acids: formation and biological actions of “epoxy-genase”-derived eicosanoids, Pharmacol. Rev. 40: 229–241 (1989)Google Scholar
  101. 101.
    J. Capdevilla, P. Yadagiri, S. Manna and J.R. Falck, Absolute configuration of the hydroxyeicosatetraenoic acids (HETEs) formed during catalytic oxygenation of arachidonic acid by microsomal cytochrome P-450, Biochem. Biophys. Res. Commun. 141: 1007–1011 (1986)Google Scholar
  102. 102.
    S. Hammarström, M. Hamberg, B. Samuelson, E.A. Duell, M. Stawiski and J. J. Voorhees, Increased concentrations of nonesterified arachidonic acid, 12 L-hydroxy-5, 8, 10, 14-eicosatetraenoic acid, prostaglandin E2, and prostaglandin F2α in epidermis of psoriasis, Proc. Natl. Acad. Sci. 72: 5130–5134 (1975)PubMedGoogle Scholar
  103. 103.
    P. M. Woollard, Stereochemical difference between 12-hydroxy-5, 8, 10, 14-eicosatetraenoic acid in platelets and psoriatic lesions, Biochem. Biophys. Res. Commun. 136: 169–175 (1986)PubMedGoogle Scholar
  104. 104.
    M.L. Schwartzman, M. Balzy, J. Masferrer, N.G. Abraham, J.C. McGiff and R.C. Murphy, 12(R)-hydroxyicosatetraenoic acid: a cytochrome P-450-dependent arachidonate metabolite that inhibits Na+, K+-ATPase in the cornea, Proc. Natl. Acad. Sci. 84: 8125–8129 (1987)PubMedGoogle Scholar
  105. 105.
    R,C. Murphy, J.R. Falck, S. Lumin, P. Yadagiri, J.A. Zirrolli, M. Balazy, J.L. Masferrer, N.G. Abraham and M.L. Schwartzman, 12(R)-hydroxyeicosatrienoic acid: a vasodilator cytochrome P-450-dependent arachidonate metabolite from the bovine corneal epithelium, J. Biol. Chem. 263: 17197–17202 (1988)PubMedGoogle Scholar
  106. 106.
    V. Ullrich and H. Graf, Prostacyclin and thromboxane synthase as P-450 enzymes, TIPS 5:352–355 (1984)Google Scholar
  107. 107.
    M. Hecker, W.J. Baader, P. Weber and V. Ullrich, Thromboxane synthase catalyses hydroxylations of prostaglandin H2 analogs in the presence of iodosylbenzene, Eur. J. Biochem. 169: 563–569 (1987)PubMedGoogle Scholar
  108. 108.
    M. Haurand and V. Ullrich, Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P-450 enzyme, J. Biol. Chem. 260: 15059–15067 (1985)PubMedGoogle Scholar
  109. 109.
    M. Hecker and V. Ullrich, On the mechanism of prostacyclin and thromboxane A2 biosynthesis, J. Biol. Chem. 264: 441–150 (1989)Google Scholar
  110. 110.
    M.C. Romano, R.D. Eckardt, P.E. Bender, T.B. Leonard, K.M. Straub and J. F. Newton, Biochemical characterization of hepatic microsomal leukotriene B4 hydroxylases, J. Biol. Chem. 262: 1590–1595 (1987)PubMedGoogle Scholar
  111. 111.
    A. Hatzelmann and V. Ullrich, The ω-hydroxylation of arachidonic acid by human polymorphonuclear leukocytes, Eur. J. Biochem. 173: 445–452 (1988)PubMedGoogle Scholar
  112. 112.
    R.J. Soberman, J.P. Sutyak, R.T. Okita, D.F. Wendelborn, L.J. Roberts and Austen, The identification and formation of 20-aldehyde leukotriene B4, J. Biol. Chem. 263: 7996–8002 (1988)PubMedGoogle Scholar
  113. 113.
    H.F. DeLuca and H. Schnoes, Vitamin D: recent advances, Ann. Rev. Biochem. 52: 411–439 (1983)PubMedGoogle Scholar
  114. 114.
    I. Björkhem and I. Holmberg, Assay and properties of a mitochondrial 25-hydroxylase active on vitamin D3, J. Biol. Chem. 253: 842–849 (1978)PubMedGoogle Scholar
  115. 115.
    I. Björkhem and I. Holmberg, On the 25-hydroxylation of vitamin D3 in vitro studied with a mass fragmentographic technique, J. Biol. Chem. 254: 9518–9524 (1979)Google Scholar
  116. 116.
    S. Andersson, I. Holmberg and K. Wikvall, 25-Hydroxylation of C27-steroids and vitamin D3 by a constitutive cytochrome P-450 from rat liver microsomes, J. Biol. Chem. 258: 6777–6781 (1983)PubMedGoogle Scholar
  117. 117.
    S.-I. Hayashi, M. Noshiro and K. Okuda, Purification of cytochrome P-450 catalyzing 25-hydroxylation of vitamin D3 from rat liver microsomes, Biochem. Biophys. Res. Commun. 121: 994–1000 (1984)PubMedGoogle Scholar
  118. 118.
    S.-I. Hayashi, T. Omura, T. Watanabe and K. Okuda, Immunochemical evidence for the catalysis of vitamin D3 25-hydroxylation and testosterone 16α-hydroxylation by homologous forms of cytochrome P-450 in rat liver microsomes, J. Biochem. 103: 853–857 (1988)PubMedGoogle Scholar
  119. 119.
    S.-I. Hayashi, K.-I. Morohashi, H. Yoshioka, K. Okuda and T. Omura, Expression of a rat liver microsomal cytochrome P-450 catalyzing testosterone 16α-hydroxylation in Saccharomyces cerevisiae: vitamin D3 25-hydroxylase and testosterone 16α-hydroxylase are distinct forms of cytochrome P-450, J. Biochem. 103: 858–862 (1988)PubMedGoogle Scholar
  120. 120.
    S. Andersson and H. Jörnvall, Sex differences in cytochrome P-450-dependent 25-hydroxylation of C27-steroids in rat liver microsomes, J. Biol. Chem. 261: 16932–16936 (1986)PubMedGoogle Scholar
  121. 121.
    K. Saarem and J.I. Pedersen, 25-Hydroxylation of la-hydroxyvitamin D-3 in rat and human liver, Biochim. Biophys. Acta 840: 117–126 (1985)PubMedGoogle Scholar
  122. 122.
    K. Saarem, S. Bergseth, H. Oftebro and J. I. Pedersen, Subcellular localization of vitamin D3 25-hydroxylase in human liver, J. Biol. Chem. 259: 10936–10940 (1984)PubMedGoogle Scholar
  123. 123.
    O. Masumoto, Y. Ohyama and K. Okuda, Purification and characterization of vitamin D 25-hydroxylase from rat liver mitochondria, J. Biol. Chem. 263: 14256–14260 (1988)PubMedGoogle Scholar
  124. 124.
    K. Saarem and J.I. Pedersen, Sex differences in the hydroxylation of cholecalciferol and of 5ß-cholestane-3α, 7α, 12α-triol in rat liver, Biochem. J. 247: 73–78 (1987)PubMedGoogle Scholar
  125. 125.
    R.T. Turner, J.E. Puzas, M.D. Forte, G.E. Lester, T.K. Gray, G.A. Howard and D.J. Baylink, In vitro synthesis of 1,25-dihydroxychole-calciferol and 24, 25-dihydroxycholecalciferol by isolated carvarial cells, Proc. Natl. Acad. Sci. USA, 77: 5720–5724 (1980)PubMedGoogle Scholar
  126. 126.
    G. A. Howard, T. Russell, R. T. Turner, D. J. Sherrard and D. J. Baylink, Human bone cells in culture metabolize 25-hydroxyvitamin D3 to 1, 25-dihydroxyvitamin D3 and 24, 25-dihydroxyvitamin D3, J. Biol. Chem. 256: 7738–7740 (1981)PubMedGoogle Scholar
  127. 127.
    T.L. Frankel, R.S. Mason, P. Hersey, E. Murray and S. Posen, The synthesis of vitamin D metabolites by human melanoma cells, J. Clin. Endocrinol. Metab. 57: 627–631 (1983)PubMedGoogle Scholar
  128. 128.
    G.L. Barbour, J.W. Coburn, E. Slatopolsky, A. W. Norman and R.L. Horst, Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1, 25-dihydroxyvitamin D, N. Engl. J. Med. 305: 440–443 (1981)PubMedGoogle Scholar
  129. 129.
    J.A. Whitsett, M. Ho, R.C. Tsang, E.J. Norman and K.G. Adams, Synthesis of 1, 25-dihydroxyvitamin D3 by human placenta in vitro, J. Clin. Endicrinol. Metab. 53: 484–488 (1979)Google Scholar
  130. 130.
    Y. Weisman, A. Harell, S. Edelstein, M. David, Z. Spirer and A. Golander, 1α, 25 Dihydroxyvitamin D3 and 24,25 dihydroxyvitamin D3 in vitro synthesis by human decidia and placenta, Nature 281: 317–319 (1979)PubMedGoogle Scholar
  131. 131.
    D. D. Bikle, M. K. Nemanic, J. O. Whitney and P.W. Elias, Neonatal human foreskin keratinocytes produce 1, 25-dihydroxyvitamin D3, Biochemistry 25: 1545–1548 (1986)PubMedGoogle Scholar
  132. 132.
    D. D. Bikle, M. K. Nemanic, E. Gee and P. Elias, 1, 25-Dihydroxyvitamin D3 production by human keratinocytes: kinetics and regulation, J. Clin. Invest. 78: 557–566 (1986)PubMedGoogle Scholar
  133. 133.
    S. Pillai, D.D. Bikle and P.M. Elias, Vitamin D and epidermal differentiation: evidence for a role of endogenously produced vitamin D metabolites in keratinocyte differtiation, Skin Pharmacol. 1: 149–160 (1988)PubMedGoogle Scholar
  134. 134.
    J.E. Graebe, Gibberellin biosynthesis and control, Ann Rev Physiol 38: 419–465 (1987)Google Scholar
  135. 135.
    I. Björkhem, Mechanism of bile acid biosynthesis in mammalian liver, in: “Sterols and bile acids” H. Danielson and J. Sjövall, eds., Elsevier, Amsterdam, (1985)Google Scholar
  136. 136.
    H. Danielsson and K. Wikvall, Evidence for a specific cytochrome P-450 with short half-life catalyzing 7α-hydroxylation of cholesterol, Biochem. Biophys. Res Commun. 103: 46–51 (1981)PubMedGoogle Scholar
  137. 137.
    W.R. Rush and R. Fears, Requirements for cytochrome P-450: evidence from metabolic studies and the response to xenobiotics, in: “Cholesterol 7α-hydroxylase (7α-mono-oxygenase)” R. Fears and J.R. Sabine eds., CRC PRESS, INC., Boca Raton, Florida (1986)Google Scholar
  138. 138.
    R. Hansson and K. Wikvall, Hydroxylations in biosynthesis of bile acids. Cytochrome P-450 LM4 and 12α-hydroxylation of 5ß-cholestane-3α,7α-diol, Eur. J. Chem. 125: 423–429 (1982)Google Scholar
  139. 139.
    M. Noshiro, M. Nishimoto, K.-I. Morohashi and K. Okuda, Molecular cloning of cDNA for cholesterol 7α-hydroxylase from rat liver microsomes. Nucleotide sequence and expression, FEBS. Lett. 257: 97–100 (1989)PubMedGoogle Scholar
  140. 140.
    J. Kwekkeboom, E.M. van Voorthuizen, H.M.G. Princen and H.J. Kempen, Feedback inhibition of bile acid synthesis in cultured pig hepatocytes, Biochem. Biophys. Res. Commun., 155: 850–856 (1988)PubMedGoogle Scholar
  141. 141.
    K. Wikvall, Hydroxylations in biosynthesis of bile acids. Isolation of a cytochrome P-450 from rabbit liver mitochondria catalyzing 2 6-hydroxylation of C27-steroids, J. Biol. Chem. 259: 3800–3804 (1984)PubMedGoogle Scholar
  142. 142.
    H. Dahlbäck, Characterization of the liver mitochondrial cytochrome P-450 catalyzing the 26-hydroxylation of 5ß-cholestane-3α,7α,12α-triol, Biochem. Biophys. Res. Commun. 157: 30–36 (1988)PubMedGoogle Scholar
  143. 143.
    S. Skrede, I. Björkhem, A.A. Kvittingen and M.S. Buchmann, Demonstration of 26-hydroxylation of C27-steroids in human skin fibroblasts, and a deficiency of this activity in cerebrotendinous xanthomatosis, J. Clin. Invest. 78: 729–735 (1986)PubMedGoogle Scholar
  144. 144.
    F.R. Taylor, S.E. Saucier, E.P. Shown, E.J. Parish and A.A. Kandutsch, Correlation between oxysterol binding to a cytosolic binding protein in the repression of hydroxymethylglutaryl coenzyme A reductase, J. Biol. Chem. 259: 12382–12387 (1984)PubMedGoogle Scholar
  145. 145.
    A. B. Roberts and H.F. DeLuca, Pathways of retinoic acid metabolism in the rat, Biochem. J. 102: 600–605 (1967)PubMedGoogle Scholar
  146. 146.
    M.A. Leo, S. Iida and C.S. Lieber, Retinoic acid by a system reconstituted with cytochrome P-450, Arch. Biochem. Biophys. 234: 305–311 (1984)PubMedGoogle Scholar
  147. 147.
    M.A. Leo and C.S. Lieber, New pathway for retinol metabolism in liver micrisomes, J. Biol. Chem. 260: 5228–5231 (1985)PubMedGoogle Scholar
  148. 148.
    A.B. Roberts, Microsomal oxidation of retinoic acid in hamster liver, intestine, and testis, Ann. N.Y. Acad. Sci. 359: 45–53 (1981)PubMedGoogle Scholar
  149. 149.
    A.B. Roberts, M.D. Nichols, D.L. Newton and M.B. Sporn, In vitro metabolism of retinoic acid in hamster intestine and liver, J. Biol. Chem. 254: 6296–6302 (1979)PubMedGoogle Scholar
  150. 150.
    A.B. Roberts, C.A. Frolik, M.D. Nichols and M.B. Sporn, Retinoid-dependent induction of the in vivo and in vitro metabolism of retinoic acid in tissues of the vitamin A-deficient hamster, J. Biol. Chem. 254: 6303–6309 (1979)PubMedGoogle Scholar
  151. 151.
    C.A. Frolik, In vitro and in vivo metabolism of all-trans and 13-cis-retinoic acid in the hamster, Ann. N.Y. Acad. Sc. 359: 37–44 (1981)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Hugo Vanden Bossche
    • 1
  • Henri Moereels
    • 1
  • Paul A. J. Janssen
    • 1
  1. 1.Janssen Research FoundationBeerseBelgium

Personalised recommendations