Prostanoid Metabolism and Biologically Active Product Formation

  • David Kupfer
Part of the NATO ASI Series Advanced Science Institutes Series book series (NSSA, volume 202)


This presentation was designed to introduce the reader to the field of prostanoid metabolism by cytochrome P450 monooxygenases. Therefore, the description of the biosynthesis of prostanoids carried out by cyclooxygenase (not a P450 enzyme) was kept brief. To do justice to the subject of P450 catalyzed metabolism of prostanoids would require an extensive review of the subject which is not the goal of this manuscript. Thus, this presentation intends to concentrate on the metabolism of prostaglandins primarily in the liver. However certain studies on prostaglandin metabolism by monooxygenases in extrahepatic tissues which might provide useful comparison with liver findings, as well as relevance to in vivo situations are also described. Since the presentation of metabolic studies in extrahepatic tissues was not intended to be exhaustive, I apologize to those investigators whose work has been omitted or inadequately covered in this presentation. Studies on cytochrome P450 catalyzed hydroxylation of arachidonic acid have been omitted. A comprehensive review of this subject has been recently published. Additionally the interested reader should consult original publications on arachidonic acid metabolism by Drs. Jorge Capdevila (Nashville, TN, USA), Michal Schwartzman (Valhalla, NY, USA) and Ernst Oliw (Stockholm, Sweden).


Seminal Vesicle Liver Microsome Rabbit Liver Extrahepatic Tissue Lung Microsome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. A. Fitzpatrick, and R. C. Murphy, Pharmacol. Rev. 40:229 (1989).Google Scholar
  2. 2.
    M. Hecker, and V. Ullrich, J. Biol. Chem. 264:141 (1989).PubMedGoogle Scholar
  3. 3.
    K. Svanborg, and M. Bygdeman, Eur. J. Biochem.. 28:127 (1972).PubMedCrossRefGoogle Scholar
  4. 4.
    F. F. Sun, Biochim. Biophys. Acta 348:249 (1974).PubMedGoogle Scholar
  5. 5.
    F. F. Sun, and J. E. Stafford, Biochim. Biophys. Acta 369:95 (1974).PubMedGoogle Scholar
  6. 6.
    C. K. Ellis, M. D. Smigel, J. A. Oates, O. Oelz, and B. J. Sweetman, J Biol. Chem. 254:4152 (1979).PubMedGoogle Scholar
  7. 7.
    U. Israelsson, M. Hamberg, and B. Samuelsson, Europ. J. Biochem.. 11:390 (1969).PubMedCrossRefGoogle Scholar
  8. 8.
    B. Samuelsson, E. Granstrom, K. Green, and M. Hamberg, Ann. N.Y. Acad. Sci. 180:138 (1971).Google Scholar
  9. 9.
    D. Kupfer, Pharmacol. Ther. 11:469 (1981).CrossRefGoogle Scholar
  10. 10.
    D. Kupfer, rn: “Hepatic Cytochrome P-450 Monooxygenase System,” J. B. Schenkman, and D. Kupfer, eds., pp. 157–187, Pergamon Press, New York (1982).Google Scholar
  11. 11.
    J. B. Schenkman, J. A. Ball, and R. W. Estabrook, Biochem. Pharmacol. 16:1071 (1967).PubMedCrossRefGoogle Scholar
  12. 12.
    A. D. Theoharides, and D. Kupfer, J. Biol. Chem. 256:2168 (1981).PubMedGoogle Scholar
  13. 13.
    K. A. Holm, R. J. Engell, and D. Kupfer, Arch. Biochem. Biophvs. 237:477 (1985).CrossRefGoogle Scholar
  14. 14.
    D. Kupfer, and J. Navarro, Life Sci. 18:507 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Navarro, D. E. Piccolo, and D. Kupfer, Arch. Biochem. Biophys. 191:125 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Kupfer, J. Navarro, G. K. Miranda, and A. D. Theoharides, Arch. Biochem. Biophvs. 205:297 (1980).CrossRefGoogle Scholar
  17. 17.
    D. Kupfer, J. Navarro, and D. E. Piccolo, J. Biol. Chem. 253:2804 (1978).PubMedGoogle Scholar
  18. 18.
    D. Kupfer, G. K. Miranda, J. Navarro, D. E. Piccolo, and A. D. Theoharides, J. Biol. Chem. 254:10405 (1979).PubMedGoogle Scholar
  19. 19.
    W. S. Powell, and S. Solomon, J. Biol. Chem. 253:4609 (1978).PubMedGoogle Scholar
  20. 20.
    W. S. Powell, J. Biol. Chem. 253:6711 (1978).PubMedGoogle Scholar
  21. 21.
    W. S. Powell, Prostaglandins 19:701 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    D. E. Williams, S. E. Hale, R. T. Okita, and B. S. S. Masters, J. Biol. Chem. 259:14600 (1984).PubMedGoogle Scholar
  23. 23.
    S. Yamamoto, E. Kusunose, K. Ogita, M. Kaku, K. Ichihara, and M. Kusunose, J. Biochem. 96:593 (1984).PubMedGoogle Scholar
  24. 24.
    E. Kusonose, M. Kaku, K. Ichihara, S. Yamamoto, I. Yano, and M. Kusunose, J. Biochem. 95:1733 (1984).Google Scholar
  25. 25.
    M. Kaku, E. Kusunose, S. Yamamoto, K. Ichihara, and M. Kusonose, J. Biochem. 97:663 (1985).PubMedGoogle Scholar
  26. 26.
    M. P. Arlotto, D. J. Greenway, and A. Parkinson, Arch. Biochem. Biophvs. 270:441 (1989).CrossRefGoogle Scholar
  27. 27.
    R. T. Okita, L. K. Parkhill, Y. Yasukochi, B. S. S. Masters, A. D. Theoharides, and D. Kupfer, J. Biol. Chem. 256:5961 (1981).PubMedGoogle Scholar
  28. 28.
    E. H. Oliw, and M. Hamberg, Biochim. Biophys. Acta 879:113 (1986).PubMedGoogle Scholar
  29. 29.
    E. H. Oliw, P. Fahlstadius, and M. Hamberg, J. Biol. Chem. 261:9216 (1986).PubMedGoogle Scholar
  30. 30.
    M. T. Leithauer, D. L. Roerig, S. M. Winquist, A. Gee, R. T. Okita, and B. S. S. Masters, Prostaglandins 36:819 (1988).CrossRefGoogle Scholar
  31. 31.
    E. H. Oliw, A. C. Kinn, and U. Kvist, J. Biol. Chem. 263:7222 (1988).PubMedGoogle Scholar
  32. 32.
    E. H. Oliw, J. Biol. Chem. 264:17845 (1989).PubMedGoogle Scholar
  33. 33.
    K. P. Vatsis, A. D. Theoharides, D. Kupfer, and M. J. Coon, J. Biol. Chem. 257:11221 (1982).PubMedGoogle Scholar
  34. 34.
    K. A. Holm, and D. Kupfer, J. Biol. Chem. 260:2027 (1985).PubMedGoogle Scholar
  35. 35.
    Y. Kikuta, E. Kusunose, S. Matsubara, Y. Funae, S. Ymaoka, I. Kubota, and M. Kusunose, J. Biochem. 106:468 (1989).PubMedGoogle Scholar
  36. 36.
    D. Kupfer and K. A. Holm, Drug Metab. Rev. 20(2-4):753 (1989).PubMedCrossRefGoogle Scholar
  37. 37.
    K. A. Holm, D. R. Koop, M. J. Coon, A. D. Theoharides, and D. Kupfer, Arch. Biochem. Biophvs. 243:134 (1985).CrossRefGoogle Scholar
  38. 38.
    K. A. Holm, S. S. Park, H. V. Gelboin, and D. Kupfer, Arch. Biochem. Biophvs. 269:664 (1989).CrossRefGoogle Scholar
  39. 39.
    D. Kupfer, I. Jansson, L. V. Favreau, A. D. Theoharides, and J. B. Schenkman, Arch. Biochem. Biophys. 261:186 (1988).PubMedCrossRefGoogle Scholar
  40. 40.
    A. S. Muerhoff, D. E. Williams, M. T. Leithauser, V. E. Jackson, M. R. Waterman, and B. S. S. Masters, Proc. Natl. Acad. Sci. USA 84:7911 (1987).PubMedCrossRefGoogle Scholar
  41. 41.
    S. Matsubara, S. Yamamoto, K. Sogawa, N. Yokotani, Y. Fujii-Kuriyama, M. Haniu, J. E. Shively, O. Gotoh, E. Kusunose, and M. Kusunose, J. Biol. Chem. 262:13366 (1987).PubMedGoogle Scholar
  42. 42.
    M. Hamberg, and B. Samuelson, J. Biol. Chem. 241:257 (1966).PubMedGoogle Scholar
  43. 43.
    P. L. Taylor, and R. W. Kelly, Nature 250:665 (1974).PubMedCrossRefGoogle Scholar
  44. 44.
    R. W. Kelly, P. L. Taylor, J. P. Hearn, R. V. Short, D. E. Martin, and J. H. Marston, Nature 260:544 (1976).PubMedCrossRefGoogle Scholar
  45. 45.
    E. H. Oliw, Prostaglandins 35:523 (1988).PubMedCrossRefGoogle Scholar
  46. 46.
    S. Yamamoto, E. Kusunose, S. Matsubara, K. Ichihara, and M. Kusunose, J. Biochem. 100:175 (1986).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • David Kupfer
    • 1
  1. 1.Worcester Foundation for Experimental BiologyShrewsburyUSA

Personalised recommendations