Ontogenesis of Liver Cytochromes P450

  • Claude Bonfils
  • Jean Combalbert
  • Thierry Pineau
  • Christian Larroque
  • Reinhard Lange
  • Patrick Maurel
Part of the NATO ASI Series Advanced Science Institutes Series book series (NSSA, volume 202)


The role of cytochromes P450 in the metabolism of xenobiotics is now well documented. Multiple cytochromes P450 are present in the human liver as well as in laboratory animals. The P450 isozymes are characterized by their spectrum, molecular weight, immunologic properties as well as their amino acid sequence. They are all monooxygenase enzymes, but present overlapping substrate specificity. In untreated animals, there is an equilibrium between the different P450 forms which may be affected by treatment with inducer drugs. This equilibrium may be also modified by “natural” inducers like age, sex, and hormonal status. The study of ontogenesis of cytochromes P450 is of both biological and pharmacological interest. It is of considerable importance in understanding hepatocytes differenciation as well as drug metabolism during perinatal life. We present here a survey of recent developments made in several laboratories on rat and human P450 ontogenesis and we report our own results on the rabbit liver.


Rabbit Liver Monooxygenase Activity P450 Form P4S0 Form Human Fetal Liver 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Gillette and B. Stripp, Pre-and postnatal enzyme capacity for drug metabolite production, Federation Proc., 34:172 (1975).Google Scholar
  2. 2.
    A.H. Neims, M. Warner, P.M. Loughnan and J. V. Aranda, Developmental aspects of the hepatic cytochrome P450 monooxygenase system, An. Rev. Pharmacol. Toxicol., 16:427 (1976).CrossRefGoogle Scholar
  3. 3.
    T. Cresteil, J. P. Flinois, A. Pfister and J. P. Leroux, Effect of microsomal preparations and induction on cytochrome P450-dependent monooxygenases in fetal and neonatal rat liver, Biochem. Pharmacol., 28:2057 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    T. Cresteil, P. Beaune, C. Celier, J.P. Leroux and F.P. Guengerich, Cytochrome P4 50 isoenzyme content and monooxygenase activities in rat liver: effect of ontogenesis and pretreatment by phenobarbital and 3-methylcholanthrene, J. Pharmacol. Exp. Ther., 236:269 (1986).PubMedGoogle Scholar
  5. 5.
    E. T. Morgan, C. Mac Geoch and J. A. Gustafsson, Hormonal and developmental regulation of expression of the hepatic microsomal steroid 16 α-hydroxylase cytochrome P450 apoprotein in the rat. J. Biol. Chem., 260:11895 (1985).PubMedGoogle Scholar
  6. 6.
    D. J. Waxman, G. A. Dannan, and F. P. Guengerich, Regulation of rat hepatic cytochrome P450: Age-dependent expression, hormonal imprinting, and xenobiotic inducibility of sex specific isoenzymes, Biochemistry, 24:4409 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    S. D. Black and M. J. Coon, P450 structure and function, in: “Advances in Enzymology”, A. Meister, ed., John Willey, N.Y., 60:35 (1987).Google Scholar
  8. 8.
    D. W. Nebert, M. Adesnik, M. J. Coon, R. W. Estabrook, F.J. Gonzalez F. P. Guengerich, I. C. Gunsalus, E. F. Johnson, B. Kemper, W. Levin, I. R. Phillips, R. Sato and M. R. Waterman, The P450 gene superfamily: recommended nomenclature, DNA, 6:1 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    D. W. Nebert, D. R. Nelson, M. Adesnik, M. J. Coon, R. W. Estabrook, F. J. Gonzalez, F. P. Guengerich, I. C. Gunsalus, E.F. Johnson, B. Kemper, W. Levin, I. R. Phillips, R. Sato and M. R. Waterman, The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci, DNA, 8:1 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Cresteil, P. Beaune, P. Kremers, C. Celier, F. P. Guengerich and J. P. Leroux, Immunoquantification of epoxide hydrolase and Cytochrome P450 isozymes in fetal and adult human liver microsomes, Eur. J.Biochem., 151:345 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Kitada, T. Kamataki, K. Itahashi, T. Rikihisa, R. Kato and Y. Kanakubo, Purification and properties of cytochrome P4 50 from homogenates of human fetal livers, Arch. Biochem. Biophys. 241:275 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Kitada, T. Kamataki, K. Itahashi, T. Rikihisa, R. Kato and Y. Kanakubo, Immunochemical examinations of cytochrome P450 in various tissues of human fetuses using antibodies to human fetal cytochrome P450, P450 HFLa, Biochem. Biophys. Res. Commun., 131:1154 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Kitada, N. Igoshi, T. Kamataki, K. Itahashi, T. Rikihisa and Y. Kanakubo, The proteins immunochemically related to P450 HFLa, amajor form of cytochrome P450 in human fetal livers, are present in liver microsomes from various animal species, Res. Commun Chem. Pathol. Pharmacol., 82:31 (1988).Google Scholar
  14. 14.
    J. M. Tredger, R. S. Chhabra and J. R. Fouts, Postnatal development of mixed-function oxidation as measured in microsomes from the small intestine and liver of rabbits, Drug Metab. Dispos., 4:17 (1976).PubMedGoogle Scholar
  15. 15.
    S. A. Atlas, A. R. Boobis,. J. S. Felton, S. S. Thorgeirsson and D.W. Nebert, Ontogenic expression of polycyclic aromatic compound-inducible monooxygenase activities and forms of cytochrome P4 50 in rabbit, J. Biol. Chem., 252:4712 (1977).PubMedGoogle Scholar
  16. 16.
    C. Bonfils, J. Combalbert, T. Pineau, J. Angevin, C. Larroque, J. Derancourt, J.P. Capony and P. Maurel, Ontogenesis of rabbit liver cytochrome P450. Evidence for a P450 HE (3a) related form prevailing during postnatal period, Eur. J. Biochem., 188:187 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    D. R. Koop, E. T. Morgan, G. E. Tarr and M. J. Coon, Purification and characterization of a unique isozyme of cytochrome P450 from liver microsomes of ethanol-treated rabbits, J. Biol. Chem., 257:8472 (1982).PubMedGoogle Scholar
  18. 18.
    G. E. Tarr, S. D. Black, V. S. Fujita and M. J. Coon, Complete aminoacid sequence and predicted membrane topology of phenobarbital-induced cytochrome P450 (Isozyme 2) from rabbit liver microsomes, Proc. Natl. Acad. Sci. USA, 80:6552 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Ozols, F. S. Heinemann and E. F. Johnson, The complete aminoacid sequence of a constitutive form of liver microsomal cytochrome P450, J. Biol. Chem., 260:5427 (1985).PubMedGoogle Scholar
  20. 20.
    C. Bonfils and J. Combalbert, Resolution of rabbit liver cytochrome P450 3b and 3c, P450 IIC3 and IIIA4, from microsomal membrane by two dimensional gel electrophoresis, EIectrophoresis, 11:182 (1990).CrossRefGoogle Scholar
  21. 21.
    S. C. Khani, T. D. Porter, V. S. Fujita and M. J. Coon, Organisation and differential expression of two highly similar genes in the rabbit alcohol-inducible cytochrome P450 subfamily, J. Biol. Chem., 263:7170 (1988).PubMedGoogle Scholar
  22. 22.
    D. E. Ryan., L. Ramanathan, S. Iida, P. E. Thomas, M. Haniu, J.E. Shively, C. S. Lieber and W. Levin, Characterization of a major form of rat hepatic microsomal cytochrome P450 induced by isoniazid J. Biol. Chem., 260:6385 (1985).PubMedGoogle Scholar
  23. 23.
    S. A. Wrighton, P. E. Thomas, D. T. Molowa, M. Haniu, J. E. Shively, S. L. Maines, P. B. Watkins, G. Parker, G. Mendez-Picon, W. Levin and P. S. Guzelian, Characterization of ethanol-inducible human liver N-nitrosodimethylamine demethylase, Biochemistry, 25:6731 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Claude Bonfils
    • 1
  • Jean Combalbert
    • 1
  • Thierry Pineau
    • 1
  • Christian Larroque
    • 1
  • Reinhard Lange
    • 1
  • Patrick Maurel
    • 1
  1. 1.INSERM Unité 128 SANOFI RECHERCHEService MPKRue Blayac, MontpellierFrance

Personalised recommendations