Advertisement

Electron Transfer from Cytochrome b5 to Cytochrome P450

  • Claude Bonfils
  • Jean-Louis Saldana
  • Claude Balny
  • Patrick Maurel
Part of the NATO ASI Series Advanced Science Institutes Series book series (NSSA, volume 202)

Abstract

There are four electron carriers in the endoplasmic reticulum of liver cells, two flavoproteins: NADH cytochrome b5 reductase (FP1) and NADPH cytochrome P450 reductase (FP2) and two hemoproteins: cytochrome b5 and cytochrome P450. The two reductases were first evidenced in 1950 by Hogeboom and Schneider (1) by their strong cytochrome c reductase activity. They were isolated respectively by Spatz and Strittmatter (2) and Van der Hoeven and Coon (3). The cytochrome b5 was described by Strittmatter and Ball (4). It was isolated after tryptic digestion of microsomes (5) and then purified with full length protein chain by Spatz and Strittmatter (6). The last electron carrier discovered in microsomes was cytochrome P450, the CO-binding pigment evidenced by Klingenberg (7) and Garfinkel (8) in 1958.

Keywords

Liver Microsome Reconstituted System Stop Flow Method Monooxygenase Reaction Rabbit Liver Microsome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.H. Hogeboom and W.C. Schneider, Cytochemical studies of mammalian tissues. III. Isocitric dehydrogenase and triphosphopyridine nucleotide-cytochrome c reductase of mouse liver, J.Biol. Chem., 186, 417 (1950).PubMedGoogle Scholar
  2. 2.
    L. Spatz and P. Strittmatter, A form of reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase containing both the catalytic site and an additional hydrophobic membrane-binding segment, J. Biol.Chem., 248, 793 (1973).PubMedGoogle Scholar
  3. 3.
    T. A. Van der Hoeven and M. J. Coon, Preparation and properties of partially purified cytochrome P450 and reduced nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase from rabbit liver microsomes, J.Biol. Chem., 249:6302 (1974).PubMedGoogle Scholar
  4. 4.
    C.F. Strittmatter and E.G. Ball, A hemochromogen component of liver microsomes, Proc. Natl. Acad. Sci. USA, 38, 19 (1952)PubMedCrossRefGoogle Scholar
  5. 5.
    P. Strittmatter and J. Ozols, The restricted tryptic cleavage of cytochrome b5, J.Biol. Chem., 241, 4787 (1966).PubMedGoogle Scholar
  6. 6.
    L. Spatz and P. Srittmatter, A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues, Proc. Natl. Acad. Sci. USA, 68:1042 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Klingenberg, Pigments of rat liver microsomes, Arch. Biochem. Biophys., 75: 376 (1958).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Garfinkel, Studies on pig liver microsomes, I. Enzymatic and pigment composition of different microsomal fractions, Arch. Biochem. Biophys., 77: 493 (1958).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Yassukochi and B.S.S. Masters, Some properties of a detergent solubilized NADPH-cytochrome c (cytochrome P450) reductase purified by biospecific affinity chromatography, J.Biol. Chem., 251:5337 (1976).Google Scholar
  10. 10.
    J. Ozols, G. Korza, F.S. Heinemann, M.A. Hediger and P. Strittmatter, Complete amino acid sequence of steer liver microsomal NADH cytochrome b5 reductase, J.Biol. Chem., 260:11953 (1985).PubMedGoogle Scholar
  11. 11.
    S.D. Black and M.J. Coon, P450 Sructure and Function, in: “Advances in Enzymology”, A. Meister, ed., John Willey, N.Y., 60:35 (1987).Google Scholar
  12. 12.
    R. Sato and T. Omura, “Cytochrome P450”, Kodansha, Tokio, Academic press, New-York, San Francisco, London (1978).Google Scholar
  13. 13.
    P.W. Holloway and J.T. Katz, A requirement for cytochrome b5 in microsomal stearyl coenzyme A desaturation, Biochemistry, 11:3689 (1972).PubMedCrossRefGoogle Scholar
  14. 14.
    T. Shimakata, K. Mihara and R. Sato, Reconstitution of hepatic microsomal stearoyl coenzyme A desaturase system from solubilized components, J.Biochem., 72:1163 (1972).PubMedGoogle Scholar
  15. 15.
    T. Omura and R. Sato, A new cytochrome in liver microsomes, J.Biol. Chem., 237:1375 (1962).PubMedGoogle Scholar
  16. 16.
    D.Y. Cooper, S. Levin, S. Narasimhulu, O. Rosenthal and R.W. Estabrook, Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems, Science, 147:400 (1965).PubMedCrossRefGoogle Scholar
  17. 17.
    A.Y.H. Lu and M.J. Coon, Role of hemoprotein P450 in fatty acid w-hydroxylation in a soluble enzyme system from liver microsomes, J.Biol. Chem., 243:1331 (1968).PubMedGoogle Scholar
  18. 18.
    A.H. Conney, R.R. Brown, J.A. Miller and E.C. Miller, The metabolism of methylated aminoazodyes.VI. Intracellular distribution and properties of the demethylase system, Cancer Res., 17:628 (1957).PubMedGoogle Scholar
  19. 19.
    I. Jansson and J.B. Schenkman, Studies on three microsomal electron transfer enzyme systems. Specificity of electron flow pathways, Arch. Biochem. Biophys., 178:89 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Hildebrandt and R.W. Estabrook, Evidence for the participation of cytochrome b5 in hepatic microsomal mixed function oxidation reactions, Arch. Biochem. Biophys., 143:66 (1971).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Noshiro and T. Omura, Immunochemical study on the electron pathway from NADH to cytochrome P450 of liver microsomes, J.Biochem., 83:61 (1978).PubMedGoogle Scholar
  22. 22.
    M. Noshiro, N. Harada and T. Omura, Immunochemical study on the route of electron transfer from NADH and NADPH to cytochrome P450 of liver microsomes, J.Biochem., 88:1521 (1980).PubMedGoogle Scholar
  23. 23.
    Y. Imai and R. Sato, The roles of cytochrome b5 in a reconstituted N-demethylase system containing cytochrome P450, Biochem. Biophys. Res. Commun., 75:420 (1977).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Ingelman-Sundberg and I. Johansson, Cytochrome b5 as electron donor to rabbit liver cytochrome P450 LM2 in reconstituted phospholipid vesicles, Biochem. Biophys. Res. Commun., 97, 582 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Sugiyama, N. Miki and T. Yamano, NADH and NADPH dependent reconstituted p-nitroanisole O-demethylation system containing cytochrome P450 with high affinity for cytochrome b5, J.Biochem., 87, 1457 (1980).PubMedGoogle Scholar
  26. 26.
    T. Sugiyama, N. Miki, Y. Miyake and T. Yamano, Interaction and electron transfer between cytochrome b5 and cytochrome P450 in the reconstituted p-nitroanisole O-demethylase system, J.Biochem., 92, 1793 (1982).PubMedGoogle Scholar
  27. 27.
    A.Y.H. Lu, S.B. West, M. Vore, D. Ryan and W. Levin, Role of cytochrome b5 in hydroxylation by a reconstituted cytochrome P450-containing system, J.Biol. Chem., 249, 6701 (1974).PubMedGoogle Scholar
  28. 28.
    A.Y.H. Lu and W. Levin, Liver microsomal electron transport systems. III. The involvement of cytochrome b5 in the NADPH supported cytochrome P450 dependent hydroxylation of chlorobenzene, Biochem. Biophys. Res. Commun., 61, 1348 (1974).PubMedCrossRefGoogle Scholar
  29. 29.
    T. Sugiyama, N. Miki and T. Yamano, The obligatory requirement of cytochrome b5 in the p-nitroanisole O-demethylation reaction catalysed by cytochrome P450 with a high affinity for cytochrome b5, Biochem. Biophys. Res. Commun., 90, 715 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    E.T. Morgan, D.R. Koop and M.J. Coon, Herne requirement in the effects of cytochrome b5 on catalytic activity of rabbit liver cytochrome P450, Fed. Proc., 40, 697 (1981).Google Scholar
  31. 31.
    B. Bösterling, J.R. Trudell, A.J. Trevor and M. Bendix, Lipid-protein interactions as determinants of activation or inhibition by cytochrome b5 of cytochrome P450 mediated oxidations, J.Biol. Chem., 257, 4375 (1982).PubMedGoogle Scholar
  32. 32.
    P. Hlavica, On the function of cytochrome b5 in the cytochrome P450 dependent oxygenase system, Arch. Biochem. Biophys., 228, 600 (1983).CrossRefGoogle Scholar
  33. 33.
    H. Taniguchi, Y. Imai and R. Sato, Role of the electron transfer system in microsomal drug monooxygenase reaction catalysed by cytochrome P450, Arch. Biochem. Biophys., 232, 585 (1984).PubMedCrossRefGoogle Scholar
  34. 34.
    C. Bonfils, C. Balny and P. Maurel, Direct evidence for electron transfer from ferrous cytochrome b5 to the oxyferrous intermediate of liver microsomal cytochrome P450 LM2. J.Biol. Chem., 256, 9457 (1981).PubMedGoogle Scholar
  35. 35.
    J.Y.L. Chiang, Interaction of purified microsomal cytochrome P450 with cytochrome b5, Arch. Biochem. Biophys., 211, 662 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    P.P. Tamburini and G.G. Gibson, Thermodynamic studies of the protein-protein interactions between cytochrome P450 and cytochrome b5, J.Biol. Chem., 258, 13444 (1983).PubMedGoogle Scholar
  37. 37.
    I. Jansson, P.P. Tamburini, L.V. Favreau and J.B. Schenkman, The interaction of cytochrome b5 with four cytochrome P450 enzymes from the untreated rat, Drug Metab. Dispos., 13, 453 (1985).PubMedGoogle Scholar
  38. 38.
    Y. Nisimoto and J.D. Lambeth, NADPH cytochrome P450 reductase-cytochrome b5 interactions: crosslinking of the phospholipid vesicle-associated proteins by a watersoluble carbodiimide, Arch. Biochem. Biophys., 241, 386 (1985).PubMedCrossRefGoogle Scholar
  39. 39.
    Y. Nisimoto and H. Otsuka-Murakami, Cytochrome b5, cytochrome c, and cytochrome P450 interactions with NADPH-cytochrome P450 reductase in phospholipid vesicles, Biochemistry, 27, 5869 (1988).PubMedCrossRefGoogle Scholar
  40. 40.
    P.P. Tamburini and J.B. Schenkman, Purification to homogeneity and enzymological characterization of a functional covalent complex composed of cytochrome P450 isozyme 2 and b5 from rabbit liver, Proc. Nat1. Acad. Sci. USA, 84, 11 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Claude Bonfils
    • 1
  • Jean-Louis Saldana
    • 1
  • Claude Balny
    • 1
  • Patrick Maurel
    • 1
  1. 1.Sanofi RechercheService MPK, INSERM Unite 128Rue Blayac, MontpellierFrance

Personalised recommendations