In Vivo and In Vitro Guidance of Axons

  • Timothy Allsopp
  • Friedrich Bonhoeffer
Part of the NATO ASI Series book series (NSSA, volume 192)


The brain of a vertebrate contains in one cubic millimeter about 105 neurones, 109 times more than this in the number of synapses, and about a kilometre in the length of axons and dendrites. The neurones, axons, dendrites and synapses are arranged and connected in a highly specific and ordered manner, though relatively little is known about how this complicated system develops. Developing connections between neurones are established via the neuronal growth cone, which has to navigate through an environment crowded with cellular and extra-cellular signals. The growth cone is a structure exquisitely designed for motility and this environmental exploration; it possesses a dynamic cytoskeleton and surface molecules essential for its recognition of, and recognition by, target cells.


Growth Cone Tectal Membrane Commissural Axon Growth Cone Collapse Retinal Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandtlow, C., Zachleder, T., and Schwab, M.E. 1989, Rapid and permanent inhibition of growth cone motility by oligodendrocytes, Neuron, (submitted).Google Scholar
  2. Bonhoeffer, F., and Huff, J., 1985, Position-dependant properties of retinal axons and their growth cones, Nature, 315:409.PubMedCrossRefGoogle Scholar
  3. Cox, T., Mueller, B., Bonhoeffer, F., 1989, Axonal guidance in the chick visual system: Posterior tectal membranes induce collapse of growth cones from the temporal lobe, (submitted).Google Scholar
  4. Fawcett, J. W., Rokos, J., and Bakst, I., 1989, Oligodendrocytes repel axons and cause axonal growth cone collapse, J. Cell Sci., 92:93.PubMedGoogle Scholar
  5. Fujisawa, H., Tani, N., Watanabe, K., and Ibata, Y., 1982, Branching of regenerating retinal axons and preferential selection of appropriate branches for specific neuronal connection in the newt, Dev. Biol, 90:43.PubMedCrossRefGoogle Scholar
  6. Gieter, A., 1981, Developing projections between areas of the nervous system, Biol. Cybern.., 42:69.CrossRefGoogle Scholar
  7. Gierer, A. 1987, Directional cues for growing axons forming the retinotectal projection, Development., 101:479.Google Scholar
  8. Gottlieb, D.I., Rock, K. and Glaser, L., 1976, A gradient of adhesive specificity in the developing avian retina, Proc. Natl. Acad. Sci. USA, 73:410.PubMedCrossRefGoogle Scholar
  9. Halfter, W., Claviez, M., and Schwarz, V., 1981, Preferential adhesion of tectal membranes to anterior embryonic chick retina neurites, Nature, 202:67.CrossRefGoogle Scholar
  10. Lumsden, A.G.S., and Davies, A.M., 1983, Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor, Nature, 306:786.PubMedCrossRefGoogle Scholar
  11. Rabacchi, S. A., Nere, R. L., and Dräger, U. C., 1988, Molecular cloning of the “dorsal eye antigen”: Homology to the high affinity laminin receptor, Soc. Neurosci. Abst., 14:769.Google Scholar
  12. Rager, G.H., 1980, Development of the retinotectal projection in the chicken, in: “Advances in Anatomy, Embryology and Cell Biology”, vol. 63, Brodai, A., van Luisbough, J., Ortmann, R. and Tondury, G., eds., Springer-Verlag, Berlin, p.1.Google Scholar
  13. Raper, J.A., and Kapfhammer, J.P., 1989, The enrichment of a neuronal growth cone collapsing activity from embryonic brain. Submitted.Google Scholar
  14. Sperry, R.W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. USA, 50:703.PubMedCrossRefGoogle Scholar
  15. Stuermer, C.A.O., 1986, Pathways of regenerated retinotectal axons in goldfish, J. Embryol. Exp. Morph.., 93:1.PubMedGoogle Scholar
  16. Tessier-Lavigne, M., Placzek, M., Lumsden, A.G.S., Dodd, J., and Jessell, T.M., 1989, Chemotropic guidance of developing axons in the mammalian central nervous system, Nature, 336:775.CrossRefGoogle Scholar
  17. Thanos, S., and Deutung, D., 1987, Outgrowth and directional specificity of fibres from embryonic retinal transplants in the chick optic tectum, Dev. Brain Res., 32:161.CrossRefGoogle Scholar
  18. Thanos, S., Bonhoeffer, F., and Rutishauser, U., 1984, Fibre-fibre interaction and tectal cues influence the development of the chicken retinotectal projection, Proc. Natl. Acad. Sci. USA, 81:1906.PubMedCrossRefGoogle Scholar
  19. Thanos, S. and Bonhoeffer, F., 1986, Course corrections of deflected retinal axons on the tectum of the chick embryo, Neurosci. Lett., 72:31.PubMedCrossRefGoogle Scholar
  20. Trisler, D., and Collins, F., 1987, Corresponding spatial gradients of TOP molecules in the developing retina and optic tectum, Science, 237:1208.PubMedCrossRefGoogle Scholar
  21. Walter, J., Kern-Veits, B., Huf, J., Stolze, B., and Bonhoeffer, F., 1987a, Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro, Development, 101:685PubMedGoogle Scholar
  22. Walter, J., Henke-Fahle, S., and Bonhoeffer, F., 1987b, Avoidance of posterior tectal membranes by temporal retinal axons, Development, 101:909.PubMedGoogle Scholar
  23. Walter, J., Mueller, B., and Bonhoeffer, F., 1989, Axonal guidance by an avoidance mechanism, J. Physiol. (Paris), in press.Google Scholar
  24. Willshaw, D. J., and von der Malsburg, D., 1979, Philos. Trans. R. Soc. Lond. [Biol.], 287:203.CrossRefGoogle Scholar
  25. Yoon, M. G., 1973, Retention of the original topographic polarity by the 180 degree rotated tectal reimplant in young adult goldfish. J. Physiol. (Lond), 233:575.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Timothy Allsopp
    • 1
  • Friedrich Bonhoeffer
    • 1
  1. 1.Abteilung Physikaliche BiologieMax Planck Institut für EntwicklungsbiologieTüebingenGermany

Personalised recommendations