Advertisement

Lineage Versus Environment as a Determinant of Neuronal Phenotype

  • Janet E. Braisted
  • Pamela A. Raymond
Part of the NATO ASI Series book series (NSSA, volume 192)

Abstract

How do neurons and glial cells acquire their distinct identities? What determines cell fate during neural development? What constraints are placed on the developing nervous system by genetic and environmental factors, and how do these two influences interact? The answers to these questions are essential to understanding how the highly ordered nervous system, characterized by extreme cellular diversity, develops from a seemingly homogeneous population of neuroectodermal cells.

Keywords

Photoreceptor Cell Apical Surface Outer Nuclear Layer Neural Retina Inner Nuclear Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, K., Hageman, G. S., Blanks, J. C., and Spee, C., 1989, Developmental expression of human cone matrix sheath-specific molecules, Invest. Ophthalmol Vis. Sci. Suppl., 30:490.Google Scholar
  2. Barnstable, C. J., 1980, Monoclonal antibodies which recognize different cell types in the rat retina, Nature, 286:231.PubMedCrossRefGoogle Scholar
  3. Barnstable, C. J., 1987, A molecular view of vertebrate retinal development, Mol. Neurobiol., 1:9.PubMedCrossRefGoogle Scholar
  4. Blaxter, J. H. S., and Staines, M., 1970, Pure cone retinae and retinomotor responses in larval teleosts, J. Mar.Biol. Assoc. UK, 50:449.CrossRefGoogle Scholar
  5. Bowtell, D. D. L., Simon, M. A., and Rubin, G. M., 1988, Nucleotide sequence and structure of the sevenless gene of Drosophila melanogaster, Genes Dev., 2:620.PubMedCrossRefGoogle Scholar
  6. Branchek, T., 1984, The development of the photoreceptors in the zebrafish, Brachydanio rerio. II. Function, J. Comp. Neurol., 224:116.PubMedCrossRefGoogle Scholar
  7. Branchek, T., and BreMiller, R., 1984, The development of the photoreceptors in the zebrafish, Brachydanio rerio. I. Structure, J. Comp. Neurol., 224:107.PubMedCrossRefGoogle Scholar
  8. Hafen, E., Basier, K., Edstroem, J. E., and Rubin, G. M., 1978, Sevenless, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain, Science, 236:55.CrossRefGoogle Scholar
  9. Harris, W. A., Stark, W. S., and Walker, J. A., 1976, Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster, J. Physiol(London), 256:415.Google Scholar
  10. Holt, C. E., Bertsch, T. W., Ellis, H. M., and Harris, W. A., 1988, Cellular determination in the Xenopus retina is independent of lineage and birth date, Neuron, 1:15.PubMedCrossRefGoogle Scholar
  11. Johns, P., 1982, The formation of photoreceptors in the growing retinas of larval and adult goldfish, J. Neurosci., 2:178–198.PubMedGoogle Scholar
  12. Johns, P., and Fernald, R. D., 1981, Genesis of rods in teleost fish retina, Nature, 293:141.PubMedCrossRefGoogle Scholar
  13. Johnson, L. V., Hageman, G. S., and Blanks, J. C., 1986, Interphotoreceptor matrix domains ensheath vertebrate cone photoreceptor cells, Invest. Ophthalmol Vis. Sci., 27:129.PubMedGoogle Scholar
  14. Lerea, C. L., Somers, D. E., Hurley, J. B., Klock, I. B., and Bunt-Milam, A. H., 1986, Identification of specific transducin a subunits in retinal rod and cone photoreceptors, Science, 234:77.PubMedCrossRefGoogle Scholar
  15. Nathans, J., Thomas, D., and Hogness, D. S., 1986, Molecular genetics of human color vision: the genes encoding blue, green, and red pigments, Science, 232:193.PubMedCrossRefGoogle Scholar
  16. Price, J., Turner, D., and Cepko, C., 1987, Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer, Proc. Natl. Acad. Sci. USA, 8:156.CrossRefGoogle Scholar
  17. Raymond, P. A., 1985, Cytodifferentiation of photoreceptors in larval goldfish: delayed maturation of rods, J. Comp. Neurol., 236:90.PubMedCrossRefGoogle Scholar
  18. Raymond, P. A., Reifler, M. J., and Rivlin, P. K., 1988, Regeneration of goldfish retina: rod precursors are a likely source of regenerated cells, J. Neurobiol., 19:431.PubMedCrossRefGoogle Scholar
  19. Raymond, P. A., and Rivlin, P. K., 1987, Germinal cells in the goldfish retina that produce rod photoreceptors, Dev. Biol. 122:120.PubMedCrossRefGoogle Scholar
  20. Ready, D. F., 1989, A multifaceted approach to neural development, Trends Neurosci., 12:102–110.PubMedCrossRefGoogle Scholar
  21. Ready, D. F., Hanson, T. E., and Benzer, S., 1976, Development of the Drosophila retina, a neurocrystalline lattice, Dev. Biol. 53:217.PubMedCrossRefGoogle Scholar
  22. Reh, T. A., and Nagy, T., 1987, A possible role for the vascular membrane in retinal regeneration in Rana catesbienna tadpoles, Dev. Biol., 122;471.PubMedCrossRefGoogle Scholar
  23. Reh, T. A., Nagy, T., and Gretton, H., 1987, Laminin promotes transdifferentiation of retinal pigment epithelial cells to neurons, Nature, 330:68.PubMedCrossRefGoogle Scholar
  24. Sandy, J. M., and Blaxter, J. H. S., 1980, A study of retinal development in larval herring and sole, J. Mar. Biol Assoc. UK, 60:59.CrossRefGoogle Scholar
  25. Sanes, J. R., 1989, Extracellular matrix molecules that influence neural development, Annu. Rev. Neurosci, 12:491.PubMedCrossRefGoogle Scholar
  26. Stone, J., 1988, The origins of the cells of vertebrate retina, Prog. Retinal Res., 7:1.CrossRefGoogle Scholar
  27. Stuermer, C. A. O., 1988, Retinotopic organization of the developing retinotectal projection in the zebrafish embryo, J. Neurosci 8:4513.PubMedGoogle Scholar
  28. Tomlinson, A., Bowtell, D. D. L., Hafen, E., and Rubin G. M., 1987, Localization of the sevenless protein, a putative receptor for positional information, in the eye imaginai disc of Drosophila, Cell, 51:143.PubMedCrossRefGoogle Scholar
  29. Tomlinson, A., and Ready, D. F., 1986, Sevenless a cell-specific homeotic mutation of the Drosophila eye, Science, 231:400.PubMedCrossRefGoogle Scholar
  30. Tomlinson, A., and Ready, D. F., 1987a, Cell fate in Drosophila ommatidium, Dev. Biol., 123:264.PubMedCrossRefGoogle Scholar
  31. Tomlinson, A., and Ready, D. F., 1987b, Neuronal differentiation in the Drosophila ommatidium, Dev. Biol. 120:336.CrossRefGoogle Scholar
  32. Turner, D. L., and Cepko, C. L., 1987, A common progenitor for neurons and glia persists in rat retina late in development, Nature, 328:131.PubMedCrossRefGoogle Scholar
  33. Wetts, R., and Fraser, S. E., 1988, Multipotent precursors can give rise to all major cell types of the frog retina, Science, 239:1142.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Janet E. Braisted
    • 1
  • Pamela A. Raymond
    • 1
  1. 1.Department of Anatomy and Cell BiologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations