Advertisement

The Development of Cortical Projections

  • Peter Kind
  • Giorgio Innocenti
Part of the NATO ASI Series book series (NSSA, volume 192)

Abstract

The adult central nervous system can be thought of as a device for the ‘adaptive structuration’ of an animal’s environment. The pattern of neuronal connectivity, which develops through genetic and experience-dependent processes, is one of the factors that determines an animal’s perception of the surrounding world. It is not surprising, therefore, that the connectivity pattern of the mammalian brain as well as the developmental mechanisms that give rise to this pattern are among the most studied areas of neurobiology.

Keywords

Corpus Callosum Visual Cortex Ibotenic Acid Infragranular Layer Callosal Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, C.E., Mihailoff, G.A., and Woodward, D.J., 1983, A transient component of the developing corticospinal tract arises in visual cortex, Neurosci. Lett., 36:243.PubMedCrossRefGoogle Scholar
  2. Assai, F., Melzer, P., and Innocenti, G.M., 1989, Functional analysis of a visual cortical circuit resembling human microgyria, Eur. J. Neurosci. Suppl., 2:256.Google Scholar
  3. Berbel, P., and Innocenti, G.M., 1988, The development of the corpus callosum in cats: a light- and electron-microscopic study, J. Comp. Neurol., 276:132.PubMedCrossRefGoogle Scholar
  4. Berlucchi, G., Gazzaniga, M.S., and Rizzolatti, G., 1967, Microelectrode analysis of transfer of visual information by the corpus callosum, Arch. Ital. Biol., 105:583.PubMedGoogle Scholar
  5. Caminiti, R., and Innocenti, G.M., 1981, The postnatal development of somatosensory callosal connections after partial lesions of somatosensory areas, Exp. Brain. Res., 42:53.PubMedCrossRefGoogle Scholar
  6. Caviness, V.S., 1977, Reeler mutant mouse: a genetic experiment in developing mammalian cortex, in: “Approaches to the Cell Biology of Neurons”, Cowan, W.M. and Ferrendalli, J.A., eds., Society for Neuroscience, Bethesda, MD, p. 27.Google Scholar
  7. Caviness, V.S., and Frost, D.O., 1980, Tangential organization of thalamic projections to the neocortex in the mouse, J. Comp. Neurol., 194:335.PubMedCrossRefGoogle Scholar
  8. Choudhury, B.P., Whitteridge, D., and Wilson, M.E., 1965, The function of the callosal connections of the visual cortex, Q. J. Exp. Physiol., L:214.Google Scholar
  9. Chow, K.L., Baumbach, H.D., and Lawson, R., 1981, Callosal projections of the striate cortex in the neonatal rabbit, Exp. Brain. Res., 42:122.PubMedCrossRefGoogle Scholar
  10. Chun, J.J.M., Nakamura, M.J., and Shatz, C.J., 1987, Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons, Nature, 325:617.PubMedCrossRefGoogle Scholar
  11. Clarke, S., and Innocenti, GM., 1986, Organization of immature intrahemispheric connections, J. Comp. Neurol, 251:1.PubMedCrossRefGoogle Scholar
  12. Clarke, S., Kraftsik, R., Van der Loos, H., and Innocenti, G.M., 1989, Forms and measures of adult and developing human corpus callosum: is there sexual dimorphism?, J. Comp. Neurol., 280:213.PubMedCrossRefGoogle Scholar
  13. Cragg, B.G., 1975, The development of synapses in the visual system of the cat, J. Comp. Neurol., 160:147.PubMedCrossRefGoogle Scholar
  14. D’Amato, C.J., and Hicks, S.P., 1978, Normal development and post-traumatic plasticity of corticospinal neurons in rats, Exp. Neurol., 60:557.PubMedCrossRefGoogle Scholar
  15. Dehay, C., Bullier, J., and Kennedy, H., 1984, Transient projections from the frontoparietal and temporal cortex to areas 17, 18 and 19 in the kitten, Exp. Brain Res., 57:208.PubMedCrossRefGoogle Scholar
  16. Dehay, C., Horsburgh, G., Berland, M., Killackey, H., and Kennedy, H., 1989, Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal or retinal input, Nature, 337:265.PubMedCrossRefGoogle Scholar
  17. Dehay, C., Kennedy, H., and Bullier, J., 1988, Characterization of transient cortical projections from auditory, somatosensory, and motor cortices to visual areas 17, 18 and 19 in the kitten, J. Comp. Neurol., 272:68.PubMedCrossRefGoogle Scholar
  18. Distel, H., and Hollander, H., 1980, Autoradiographic tracing of developing subcortical projections of the occipital region in fetal rabbits. J. Comp. Neurol., 192:505.PubMedCrossRefGoogle Scholar
  19. Feng, J.Z., and Brugge, J.F., 1983, Postnatal development of auditory callosal connections in the kitten, J. Comp. Neurol., 214:416.CrossRefGoogle Scholar
  20. Figlewicz, D.A., Gremo, F., and Innocenti, G.M., 1988, Differential expression of neurofilament subunits in the developing corpus callosum, Dev. Brain Res., 42:181.CrossRefGoogle Scholar
  21. Frost, D.O., Moy, Y.P., 1989, Effects of dark rearing on the development of visual callosal connections, Exp. Brain Res., (in press).Google Scholar
  22. Hirokawa, N., 1986, Quick- freeze, deep-etch visualization of the axonal cytoskeleton, Trends Neurosci., 9:67.CrossRefGoogle Scholar
  23. Hubel, D.H., and Livingstone, M.S., 1987, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci., 7:3378.PubMedGoogle Scholar
  24. Hubel, D.H., and Wiesel, T.N., 1967, Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat, J. Neurophys., 30:1561.Google Scholar
  25. Hubel, D.H., Wiesel, T.N., and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Philos. Trans. R. Soc. Lond. [Biol], 278:377.CrossRefGoogle Scholar
  26. Huttenlocher, P.R., 1979, Synaptic density in human frontal-cortex-developmental-changes and effects of aging, Brain Res., 163:195.PubMedCrossRefGoogle Scholar
  27. Huttenlocher, P.R., Courten de C., Garey, L.J., and Van der Loos, H., 1982, Synaptogenesis in human visual cortex — evidence for synapse elimination during normal development, Neurosci. Lett., 33:247.PubMedCrossRefGoogle Scholar
  28. Innocenti, G.M., 1990, The development of cortical connections, in: “Progress in Sensory Physiology”, Springer-Verlag, (in press).Google Scholar
  29. Innocenti, G.M., 1980, The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat, Arch. Ital Biol. 118:124.PubMedGoogle Scholar
  30. Innocenti, G.M., 1986, General organization of callosal connections in the cerebral cortex. in: “Cerebral Cortex”, vol. 5, Jones, E.G. and Peters, A.,eds., Plenum Press, New York, p. 291.Google Scholar
  31. Innocenti, G.M., 1981, Transitory structures as substrate for developmental plasticity of the brain, Dev. Neurosci., 13:305.Google Scholar
  32. Innocenti, G.M., 1988, Loss of axonal projections in the development of the mammalian brain, in: “The Making of the Nervous System,” Parnavelas, J.G., Stern, CD., and Stirling, R.V., eds., Oxford University Press, Oxford, p. 319.Google Scholar
  33. Innocenti, G.M., and Berbel, P., 1989a, Analysis of an experimental cortical network: i) architectonics of areas 17 and 18 after neonatal injections of ibotenic acid; similarities with human microgyria, J. Neural Transplant (in press).Google Scholar
  34. Innocenti, G.M., and Berbel, P., 1989b, Analysis of an experimental cortical network, ii) connections of areas 17 and 18 after neonatal injections of ibotenic acid, J. Neural Transplant, (in press).Innocenti, G.M., Berbel, P., and Melzer, P., 1987, Stabilization of transitory corticocortical projections following lesions provoked by neonatal ibotenic injections, Neurosci Abstr. Suppl., 22:S227.Google Scholar
  35. Innocenti, G.M., and Caminiti, R., 1980, Postnatal shaping of callosal connections from sensory areas, Exp. Brain Res., 38:381.PubMedCrossRefGoogle Scholar
  36. Innocenti, G.M., and Clarke, S., 1984a, Bilateral transitory projection to visual areas from auditory cortex in kittens, Dev. Brain Res., 14:143.CrossRefGoogle Scholar
  37. Innocenti, G.M., and Clarke, S., 1984b, The organization of immature callosal connections, J. Comp. Neurol., 230:387.CrossRefGoogle Scholar
  38. Innocenti, G.M., Clarke, S., and Kraftsik, R., 1986, Interchange of callosal and association projections in the developing visual cortex, J. Neurosci., 6:1384.PubMedGoogle Scholar
  39. Innocenti, G.M., Fiore, L., and Caminiti, R., 1977, Exuberant projection into the corpus callosum from the visual cortex of newborn cats, Neurosci. Lett. 4:237.PubMedCrossRefGoogle Scholar
  40. Innocenti, G.M., and Frost, D.O., 1979, Effects of visual experience on the maturation of the efferent system to the corpus callosum, Nature, 280:231.PubMedCrossRefGoogle Scholar
  41. Innocenti, G.M., and Frost, D.O., 1980, The postnatal development of visual callosal connections in the absence of visual experience or of the eyes, Exp. Brain Res., 39:365.PubMedCrossRefGoogle Scholar
  42. Innocenti, G.M., Frost, D.O., and Illes, J., 1985, Maturation of visual callosal connections in visually deprived kittens: A challenging critical period, J. Neurosci., 5:255.PubMedGoogle Scholar
  43. Innocenti, G.M., Koppel, H., and Clarke, S., 1981, Glial phagocytosis during the postnatal reshaping of visual callosal connections, Neurosci. Lett. Suppl., 7:S160.Google Scholar
  44. Ivy, G.O., Akers, R.M., and Killackey, H.P., 1979, Differential distribution of callosal projection neurons in the neonatal and adult rat, Brain Res., 173:532.PubMedCrossRefGoogle Scholar
  45. Ivy, G.O., and Killackey, H.P., 1981, The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex, J. Comp. Neurol., 195:367.PubMedCrossRefGoogle Scholar
  46. Jensen, K.F., and Killackey, H.P., 1984, Subcortical projections from ectopic neocortical neurons, Proc. Natl. Acad. Sci. USA, 81:964.PubMedCrossRefGoogle Scholar
  47. Jones, E.G., Valentino, K.L., and Fleshman, J.W., 1982, Adjustment of connectivity in rat neocortex after prenatal destruction of precursor cells of layers II-IV, Dev. Brain Res., 2:425.CrossRefGoogle Scholar
  48. Kato, N., Kawaguchi, S., and Miyata, H., 1984, Geniculocortical projection to layer I of area 17 in kittens: orthograde and retrograde HRP studies, J. Comp. Neurol., 225:441.PubMedCrossRefGoogle Scholar
  49. Kato, N., Kawaguchi, S., and Miyata, H., 1986, Postnatal development of afferent projections to the lateral suprasylvian visual area in the cat: an HRP study, J. Comp. Neurol., 252:543.PubMedCrossRefGoogle Scholar
  50. Katz, L.C., and Wiesel, T.N., 1987, Postnatal development of intrinsic axonal arbors of pyramidal neurons in cat striate cortex, Soc. Neurosci. Abstr. 13:1025.Google Scholar
  51. Koppel, H. and Innocenti, G.M., 1983, Is there a genuine exuberancy of callosal projections in development? A quantitative electron microscope study in the cat, Neurosci. Lett., 41:33.PubMedCrossRefGoogle Scholar
  52. LaMantia, A-S., and Rakic, P., 1984, The number, size, myelination, and regional variation of axons in the corpus callosum and anterior commissure of the developing rhesus monkey, Soc. Neurosci. Abstr., 10:1081.Google Scholar
  53. Livingstone, M.S., and Hubel, D.H., 1987a, Connections between layer 4B of area 17 and thick cytochrome oxidase stripes of area 18 in the squirrel monkey, J. Neurosci., 7:3371.PubMedGoogle Scholar
  54. Livingstone, M.S., and Hubel, D.H., 1987b, Psychophysical evidence for separate channels for the perception of form, color, movement, and depth, J. Neurosci., 3416.Google Scholar
  55. Lund, J.S., and Mitchell, D.E., 1979, The effects of dark-rearing on visual callosal connections of cats, Brain Res., 167:172.PubMedCrossRefGoogle Scholar
  56. Lund, R.D., Mitchell, D.E., and Henry, G.H., 1978, Squint-induced modification of callosal connections in cats, Brain Res., 144:169.PubMedCrossRefGoogle Scholar
  57. Luskin, M.B., and Shatz, C.J., 1985, Neurogenesis of the cat’s primary visual cortex, J. Comp. Neurol., 242:611.PubMedCrossRefGoogle Scholar
  58. Lyon, G., Arita, F., Le Galloudec, E., Vallee, L., Misson, J-P., and Ferriere, G., 1989, A disorder of axonal development, necrotizing myopathy, cardiomyopathy and cataracts: a new familial disease, Ann. of Neurol., (in press).Google Scholar
  59. Marin-Padilla, M., 1977, Dual origin of the mammalian neocortex and evolution of the cortical plate, Anat. Embryol., 152:109.CrossRefGoogle Scholar
  60. Miller, M.W., and Vogt, B.A., 1984, The postnatal growth of the callosal connections of primary and secondary visual cortex in the rat, Dev. Brain Res., 14:304.CrossRefGoogle Scholar
  61. Mooney, R.D., Rhoades, R.W., and Fish, S.E., 1984, Neonatal superior collicular lesions alter visual callosal development in hamster, Exp. Brain Res., 55:9.PubMedCrossRefGoogle Scholar
  62. Nakamura, H., and Kanaseki, T., 1989, Topography of the corpus callosum in the cat, Brain Res., 485:171.PubMedCrossRefGoogle Scholar
  63. Olavarria, J., Bravo, H.., and Ruiz, G., 1988 The pattern of callosal connections in posterior neocortex of congenitally anophthalmic rats, Anat. Embryol., 178:155.PubMedCrossRefGoogle Scholar
  64. Olavarria, J., Malach, R., and Van Sluyters, R.C., 1987, Development of visual callosal connections in neonatally enucleated rats, J. Comp. Neurol., 260:321.PubMedCrossRefGoogle Scholar
  65. Olavarria, J., and Van Sluyters, R.C., 1984, Callosal connections of the posterior neocortex in normal-eyed, congenitally anophthalmic, and neonatally enucleated mice, J. Comp. Neurol., 230:249.PubMedCrossRefGoogle Scholar
  66. Olavarria, J., and Van Sluyters, R.C., 1985, Organization and postnatal development of callosal connections in the visual cortex of the rat, J. Comp. Neurol., 239:1.PubMedCrossRefGoogle Scholar
  67. O’Leary, D.D.M., and Terashima, T., 1988, Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and “waiting periods”, Neuron, 1:901.PubMedCrossRefGoogle Scholar
  68. Price, D.J., and Blakemore, C., 1985a, Regressive events in the postnatal development of association projections in the visual cortex, Nature, 316:721.PubMedCrossRefGoogle Scholar
  69. Price, D.J., and Blakemore, C., 1985b, The postnatal development of the association projection from visual cortical area 17 to area 18 in the cat, J. Neurosci., 5:2443.PubMedGoogle Scholar
  70. Price, D.J., and Zumbroich, T.J., 1989, Postnatal development of corticocortical efferents from area 17 in the cat’s visual cortex, J. Neurosci., 9:600.PubMedGoogle Scholar
  71. Rakic, P., 1976, Prenatal genesis of connections subserving ocular dominance in the rhesus monkey, Nature, 261:467.PubMedCrossRefGoogle Scholar
  72. Rakic, P., 1977, Prenatal development of the visual system in rhesus monkey, Philos. Trans. R. Soc. Lond. [Biol.], 278:245.CrossRefGoogle Scholar
  73. Rhoades, R.W., and Dellacroce, D.D., 1980, Neonatal enucleation induced an asymmetric pattern of visual callosal connections in hamsters, Brain Res., 202:189.PubMedGoogle Scholar
  74. Rothblat, L.A., and Hayes, L.L., 1982, Age-related changes in the distribution of visual callosal neurons following monocular enucleation in the rat, Brain. Res., 246:146.PubMedCrossRefGoogle Scholar
  75. Schwartz, M.L., and Goldman-Rakic, P.S., 1986, Some callosal neurons of the fetal monkey frontal cortex have axons in the contralateral hemisphere prior to the completion of migration, Soc. Neurosci. Abstr., 12:1211.Google Scholar
  76. Segraves, M.A., and Innocenti, G.M., 1985, Comparison of the distributions of ipsilaterally and contralaterally projecting corticocortical neurons in cat visual cortex using two fluorescent tracers, J. Neurosci., 5:2107.PubMedGoogle Scholar
  77. Shatz, C.J., 1977, Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats, J. Comp. Neurol., 173:479CrossRefGoogle Scholar
  78. Shatz, C.J., and Luskin, M.B., 1986, The relationship between the geniculocortical afférents and their cortical target cells during development of the cat’s primary visual cortex, J. Neurosci., 6:3655.PubMedGoogle Scholar
  79. Stanfield, B.B., O’Leary, D.D.M., and Fricks, C., 1982, Selective collateralo elimination in early postnatal development restricts cortical distribution or rat pyramidal tract neurones, Nature, 198:371.CrossRefGoogle Scholar
  80. Sulston, J.E., and Horvitz, H.R., 1977, Post-embryonic cell lineage of the nematode Caenorhabditis elegans, Dev. Biol., 56:110.CrossRefGoogle Scholar
  81. Tsumoto, T., Suda, K., and Sato, H., 1983, Postnatal development of corticotectal neurons in the kitten striate cortex: a quantitative study with the horseradish peroxidase technique, J. Comp. Neurol., 219:88.PubMedCrossRefGoogle Scholar
  82. Van Essen, D.C., 1985, Functional organization of primate visual cortex, in: “Cerebral Cortex”, vol. 3, Peters, A. and Jones, E.G., eds., Plenum Press, New York, p. 259.Google Scholar
  83. Winfield, D.A., 1981, The postnatal-development of synapses in the visual-cortex of the cat and the effects of eyelid closure, Brain Res., 206:166.PubMedCrossRefGoogle Scholar
  84. Yakovlev, P.I., and Lecours, A.-R., 1967, The myelogenetic cycles of regional maturation of the brain, in: “Regional development of the brain in early life,” Minkowski, A., ed., Blackwell Scientific Publications, Oxford, p. 3.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Peter Kind
    • 1
  • Giorgio Innocenti
    • 2
  1. 1.Psychology DepartmentDalhousie UniversityHalifaxCanada
  2. 2.Institute of Anatomy, Faculty of MedicineUniversity of LausanneSwitzerland

Personalised recommendations