Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 192))

Abstract

The adult central nervous system can be thought of as a device for the ‘adaptive structuration’ of an animal’s environment. The pattern of neuronal connectivity, which develops through genetic and experience-dependent processes, is one of the factors that determines an animal’s perception of the surrounding world. It is not surprising, therefore, that the connectivity pattern of the mammalian brain as well as the developmental mechanisms that give rise to this pattern are among the most studied areas of neurobiology.

This chapter to be cited as: Kind, P., and Innocenti, G. M., The development of cortical projections, in: “Systems Approaches to Developmental Neurobiology,” P. A. Raymond, S. S. Easter, Jr., and G. M. Innocenti, eds., Plenum Press, New York.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, C.E., Mihailoff, G.A., and Woodward, D.J., 1983, A transient component of the developing corticospinal tract arises in visual cortex, Neurosci. Lett., 36:243.

    Article  PubMed  CAS  Google Scholar 

  • Assai, F., Melzer, P., and Innocenti, G.M., 1989, Functional analysis of a visual cortical circuit resembling human microgyria, Eur. J. Neurosci. Suppl., 2:256.

    Google Scholar 

  • Berbel, P., and Innocenti, G.M., 1988, The development of the corpus callosum in cats: a light- and electron-microscopic study, J. Comp. Neurol., 276:132.

    Article  PubMed  CAS  Google Scholar 

  • Berlucchi, G., Gazzaniga, M.S., and Rizzolatti, G., 1967, Microelectrode analysis of transfer of visual information by the corpus callosum, Arch. Ital. Biol., 105:583.

    PubMed  CAS  Google Scholar 

  • Caminiti, R., and Innocenti, G.M., 1981, The postnatal development of somatosensory callosal connections after partial lesions of somatosensory areas, Exp. Brain. Res., 42:53.

    Article  PubMed  CAS  Google Scholar 

  • Caviness, V.S., 1977, Reeler mutant mouse: a genetic experiment in developing mammalian cortex, in: “Approaches to the Cell Biology of Neurons”, Cowan, W.M. and Ferrendalli, J.A., eds., Society for Neuroscience, Bethesda, MD, p. 27.

    Google Scholar 

  • Caviness, V.S., and Frost, D.O., 1980, Tangential organization of thalamic projections to the neocortex in the mouse, J. Comp. Neurol., 194:335.

    Article  PubMed  Google Scholar 

  • Choudhury, B.P., Whitteridge, D., and Wilson, M.E., 1965, The function of the callosal connections of the visual cortex, Q. J. Exp. Physiol., L:214.

    Google Scholar 

  • Chow, K.L., Baumbach, H.D., and Lawson, R., 1981, Callosal projections of the striate cortex in the neonatal rabbit, Exp. Brain. Res., 42:122.

    Article  PubMed  CAS  Google Scholar 

  • Chun, J.J.M., Nakamura, M.J., and Shatz, C.J., 1987, Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons, Nature, 325:617.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, S., and Innocenti, GM., 1986, Organization of immature intrahemispheric connections, J. Comp. Neurol, 251:1.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, S., Kraftsik, R., Van der Loos, H., and Innocenti, G.M., 1989, Forms and measures of adult and developing human corpus callosum: is there sexual dimorphism?, J. Comp. Neurol., 280:213.

    Article  PubMed  CAS  Google Scholar 

  • Cragg, B.G., 1975, The development of synapses in the visual system of the cat, J. Comp. Neurol., 160:147.

    Article  PubMed  CAS  Google Scholar 

  • D’Amato, C.J., and Hicks, S.P., 1978, Normal development and post-traumatic plasticity of corticospinal neurons in rats, Exp. Neurol., 60:557.

    Article  PubMed  Google Scholar 

  • Dehay, C., Bullier, J., and Kennedy, H., 1984, Transient projections from the frontoparietal and temporal cortex to areas 17, 18 and 19 in the kitten, Exp. Brain Res., 57:208.

    Article  PubMed  CAS  Google Scholar 

  • Dehay, C., Horsburgh, G., Berland, M., Killackey, H., and Kennedy, H., 1989, Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal or retinal input, Nature, 337:265.

    Article  PubMed  CAS  Google Scholar 

  • Dehay, C., Kennedy, H., and Bullier, J., 1988, Characterization of transient cortical projections from auditory, somatosensory, and motor cortices to visual areas 17, 18 and 19 in the kitten, J. Comp. Neurol., 272:68.

    Article  PubMed  CAS  Google Scholar 

  • Distel, H., and Hollander, H., 1980, Autoradiographic tracing of developing subcortical projections of the occipital region in fetal rabbits. J. Comp. Neurol., 192:505.

    Article  PubMed  CAS  Google Scholar 

  • Feng, J.Z., and Brugge, J.F., 1983, Postnatal development of auditory callosal connections in the kitten, J. Comp. Neurol., 214:416.

    Article  Google Scholar 

  • Figlewicz, D.A., Gremo, F., and Innocenti, G.M., 1988, Differential expression of neurofilament subunits in the developing corpus callosum, Dev. Brain Res., 42:181.

    Article  Google Scholar 

  • Frost, D.O., Moy, Y.P., 1989, Effects of dark rearing on the development of visual callosal connections, Exp. Brain Res., (in press).

    Google Scholar 

  • Hirokawa, N., 1986, Quick- freeze, deep-etch visualization of the axonal cytoskeleton, Trends Neurosci., 9:67.

    Article  Google Scholar 

  • Hubel, D.H., and Livingstone, M.S., 1987, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci., 7:3378.

    PubMed  CAS  Google Scholar 

  • Hubel, D.H., and Wiesel, T.N., 1967, Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat, J. Neurophys., 30:1561.

    CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N., and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Philos. Trans. R. Soc. Lond. [Biol], 278:377.

    Article  CAS  Google Scholar 

  • Huttenlocher, P.R., 1979, Synaptic density in human frontal-cortex-developmental-changes and effects of aging, Brain Res., 163:195.

    Article  PubMed  CAS  Google Scholar 

  • Huttenlocher, P.R., Courten de C., Garey, L.J., and Van der Loos, H., 1982, Synaptogenesis in human visual cortex — evidence for synapse elimination during normal development, Neurosci. Lett., 33:247.

    Article  PubMed  CAS  Google Scholar 

  • Innocenti, G.M., 1990, The development of cortical connections, in: “Progress in Sensory Physiology”, Springer-Verlag, (in press).

    Google Scholar 

  • Innocenti, G.M., 1980, The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat, Arch. Ital Biol. 118:124.

    PubMed  CAS  Google Scholar 

  • Innocenti, G.M., 1986, General organization of callosal connections in the cerebral cortex. in: “Cerebral Cortex”, vol. 5, Jones, E.G. and Peters, A.,eds., Plenum Press, New York, p. 291.

    Google Scholar 

  • Innocenti, G.M., 1981, Transitory structures as substrate for developmental plasticity of the brain, Dev. Neurosci., 13:305.

    Google Scholar 

  • Innocenti, G.M., 1988, Loss of axonal projections in the development of the mammalian brain, in: “The Making of the Nervous System,” Parnavelas, J.G., Stern, CD., and Stirling, R.V., eds., Oxford University Press, Oxford, p. 319.

    Google Scholar 

  • Innocenti, G.M., and Berbel, P., 1989a, Analysis of an experimental cortical network: i) architectonics of areas 17 and 18 after neonatal injections of ibotenic acid; similarities with human microgyria, J. Neural Transplant (in press).

    Google Scholar 

  • Innocenti, G.M., and Berbel, P., 1989b, Analysis of an experimental cortical network, ii) connections of areas 17 and 18 after neonatal injections of ibotenic acid, J. Neural Transplant, (in press).Innocenti, G.M., Berbel, P., and Melzer, P., 1987, Stabilization of transitory corticocortical projections following lesions provoked by neonatal ibotenic injections, Neurosci Abstr. Suppl., 22:S227.

    Google Scholar 

  • Innocenti, G.M., and Caminiti, R., 1980, Postnatal shaping of callosal connections from sensory areas, Exp. Brain Res., 38:381.

    Article  PubMed  CAS  Google Scholar 

  • Innocenti, G.M., and Clarke, S., 1984a, Bilateral transitory projection to visual areas from auditory cortex in kittens, Dev. Brain Res., 14:143.

    Article  Google Scholar 

  • Innocenti, G.M., and Clarke, S., 1984b, The organization of immature callosal connections, J. Comp. Neurol., 230:387.

    Article  Google Scholar 

  • Innocenti, G.M., Clarke, S., and Kraftsik, R., 1986, Interchange of callosal and association projections in the developing visual cortex, J. Neurosci., 6:1384.

    PubMed  CAS  Google Scholar 

  • Innocenti, G.M., Fiore, L., and Caminiti, R., 1977, Exuberant projection into the corpus callosum from the visual cortex of newborn cats, Neurosci. Lett. 4:237.

    Article  PubMed  CAS  Google Scholar 

  • Innocenti, G.M., and Frost, D.O., 1979, Effects of visual experience on the maturation of the efferent system to the corpus callosum, Nature, 280:231.

    Article  PubMed  CAS  Google Scholar 

  • Innocenti, G.M., and Frost, D.O., 1980, The postnatal development of visual callosal connections in the absence of visual experience or of the eyes, Exp. Brain Res., 39:365.

    Article  PubMed  CAS  Google Scholar 

  • Innocenti, G.M., Frost, D.O., and Illes, J., 1985, Maturation of visual callosal connections in visually deprived kittens: A challenging critical period, J. Neurosci., 5:255.

    PubMed  CAS  Google Scholar 

  • Innocenti, G.M., Koppel, H., and Clarke, S., 1981, Glial phagocytosis during the postnatal reshaping of visual callosal connections, Neurosci. Lett. Suppl., 7:S160.

    Google Scholar 

  • Ivy, G.O., Akers, R.M., and Killackey, H.P., 1979, Differential distribution of callosal projection neurons in the neonatal and adult rat, Brain Res., 173:532.

    Article  PubMed  CAS  Google Scholar 

  • Ivy, G.O., and Killackey, H.P., 1981, The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex, J. Comp. Neurol., 195:367.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, K.F., and Killackey, H.P., 1984, Subcortical projections from ectopic neocortical neurons, Proc. Natl. Acad. Sci. USA, 81:964.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E.G., Valentino, K.L., and Fleshman, J.W., 1982, Adjustment of connectivity in rat neocortex after prenatal destruction of precursor cells of layers II-IV, Dev. Brain Res., 2:425.

    Article  Google Scholar 

  • Kato, N., Kawaguchi, S., and Miyata, H., 1984, Geniculocortical projection to layer I of area 17 in kittens: orthograde and retrograde HRP studies, J. Comp. Neurol., 225:441.

    Article  PubMed  CAS  Google Scholar 

  • Kato, N., Kawaguchi, S., and Miyata, H., 1986, Postnatal development of afferent projections to the lateral suprasylvian visual area in the cat: an HRP study, J. Comp. Neurol., 252:543.

    Article  PubMed  CAS  Google Scholar 

  • Katz, L.C., and Wiesel, T.N., 1987, Postnatal development of intrinsic axonal arbors of pyramidal neurons in cat striate cortex, Soc. Neurosci. Abstr. 13:1025.

    Google Scholar 

  • Koppel, H. and Innocenti, G.M., 1983, Is there a genuine exuberancy of callosal projections in development? A quantitative electron microscope study in the cat, Neurosci. Lett., 41:33.

    Article  PubMed  CAS  Google Scholar 

  • LaMantia, A-S., and Rakic, P., 1984, The number, size, myelination, and regional variation of axons in the corpus callosum and anterior commissure of the developing rhesus monkey, Soc. Neurosci. Abstr., 10:1081.

    Google Scholar 

  • Livingstone, M.S., and Hubel, D.H., 1987a, Connections between layer 4B of area 17 and thick cytochrome oxidase stripes of area 18 in the squirrel monkey, J. Neurosci., 7:3371.

    PubMed  CAS  Google Scholar 

  • Livingstone, M.S., and Hubel, D.H., 1987b, Psychophysical evidence for separate channels for the perception of form, color, movement, and depth, J. Neurosci., 3416.

    Google Scholar 

  • Lund, J.S., and Mitchell, D.E., 1979, The effects of dark-rearing on visual callosal connections of cats, Brain Res., 167:172.

    Article  PubMed  CAS  Google Scholar 

  • Lund, R.D., Mitchell, D.E., and Henry, G.H., 1978, Squint-induced modification of callosal connections in cats, Brain Res., 144:169.

    Article  PubMed  CAS  Google Scholar 

  • Luskin, M.B., and Shatz, C.J., 1985, Neurogenesis of the cat’s primary visual cortex, J. Comp. Neurol., 242:611.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, G., Arita, F., Le Galloudec, E., Vallee, L., Misson, J-P., and Ferriere, G., 1989, A disorder of axonal development, necrotizing myopathy, cardiomyopathy and cataracts: a new familial disease, Ann. of Neurol., (in press).

    Google Scholar 

  • Marin-Padilla, M., 1977, Dual origin of the mammalian neocortex and evolution of the cortical plate, Anat. Embryol., 152:109.

    Article  Google Scholar 

  • Miller, M.W., and Vogt, B.A., 1984, The postnatal growth of the callosal connections of primary and secondary visual cortex in the rat, Dev. Brain Res., 14:304.

    Article  Google Scholar 

  • Mooney, R.D., Rhoades, R.W., and Fish, S.E., 1984, Neonatal superior collicular lesions alter visual callosal development in hamster, Exp. Brain Res., 55:9.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, H., and Kanaseki, T., 1989, Topography of the corpus callosum in the cat, Brain Res., 485:171.

    Article  PubMed  CAS  Google Scholar 

  • Olavarria, J., Bravo, H.., and Ruiz, G., 1988 The pattern of callosal connections in posterior neocortex of congenitally anophthalmic rats, Anat. Embryol., 178:155.

    Article  PubMed  CAS  Google Scholar 

  • Olavarria, J., Malach, R., and Van Sluyters, R.C., 1987, Development of visual callosal connections in neonatally enucleated rats, J. Comp. Neurol., 260:321.

    Article  PubMed  CAS  Google Scholar 

  • Olavarria, J., and Van Sluyters, R.C., 1984, Callosal connections of the posterior neocortex in normal-eyed, congenitally anophthalmic, and neonatally enucleated mice, J. Comp. Neurol., 230:249.

    Article  PubMed  CAS  Google Scholar 

  • Olavarria, J., and Van Sluyters, R.C., 1985, Organization and postnatal development of callosal connections in the visual cortex of the rat, J. Comp. Neurol., 239:1.

    Article  PubMed  CAS  Google Scholar 

  • O’Leary, D.D.M., and Terashima, T., 1988, Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and “waiting periods”, Neuron, 1:901.

    Article  PubMed  Google Scholar 

  • Price, D.J., and Blakemore, C., 1985a, Regressive events in the postnatal development of association projections in the visual cortex, Nature, 316:721.

    Article  PubMed  CAS  Google Scholar 

  • Price, D.J., and Blakemore, C., 1985b, The postnatal development of the association projection from visual cortical area 17 to area 18 in the cat, J. Neurosci., 5:2443.

    PubMed  CAS  Google Scholar 

  • Price, D.J., and Zumbroich, T.J., 1989, Postnatal development of corticocortical efferents from area 17 in the cat’s visual cortex, J. Neurosci., 9:600.

    PubMed  CAS  Google Scholar 

  • Rakic, P., 1976, Prenatal genesis of connections subserving ocular dominance in the rhesus monkey, Nature, 261:467.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1977, Prenatal development of the visual system in rhesus monkey, Philos. Trans. R. Soc. Lond. [Biol.], 278:245.

    Article  CAS  Google Scholar 

  • Rhoades, R.W., and Dellacroce, D.D., 1980, Neonatal enucleation induced an asymmetric pattern of visual callosal connections in hamsters, Brain Res., 202:189.

    PubMed  CAS  Google Scholar 

  • Rothblat, L.A., and Hayes, L.L., 1982, Age-related changes in the distribution of visual callosal neurons following monocular enucleation in the rat, Brain. Res., 246:146.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, M.L., and Goldman-Rakic, P.S., 1986, Some callosal neurons of the fetal monkey frontal cortex have axons in the contralateral hemisphere prior to the completion of migration, Soc. Neurosci. Abstr., 12:1211.

    Google Scholar 

  • Segraves, M.A., and Innocenti, G.M., 1985, Comparison of the distributions of ipsilaterally and contralaterally projecting corticocortical neurons in cat visual cortex using two fluorescent tracers, J. Neurosci., 5:2107.

    PubMed  CAS  Google Scholar 

  • Shatz, C.J., 1977, Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats, J. Comp. Neurol., 173:479

    Article  Google Scholar 

  • Shatz, C.J., and Luskin, M.B., 1986, The relationship between the geniculocortical afférents and their cortical target cells during development of the cat’s primary visual cortex, J. Neurosci., 6:3655.

    PubMed  CAS  Google Scholar 

  • Stanfield, B.B., O’Leary, D.D.M., and Fricks, C., 1982, Selective collateralo elimination in early postnatal development restricts cortical distribution or rat pyramidal tract neurones, Nature, 198:371.

    Article  Google Scholar 

  • Sulston, J.E., and Horvitz, H.R., 1977, Post-embryonic cell lineage of the nematode Caenorhabditis elegans, Dev. Biol., 56:110.

    Article  CAS  Google Scholar 

  • Tsumoto, T., Suda, K., and Sato, H., 1983, Postnatal development of corticotectal neurons in the kitten striate cortex: a quantitative study with the horseradish peroxidase technique, J. Comp. Neurol., 219:88.

    Article  PubMed  CAS  Google Scholar 

  • Van Essen, D.C., 1985, Functional organization of primate visual cortex, in: “Cerebral Cortex”, vol. 3, Peters, A. and Jones, E.G., eds., Plenum Press, New York, p. 259.

    Google Scholar 

  • Winfield, D.A., 1981, The postnatal-development of synapses in the visual-cortex of the cat and the effects of eyelid closure, Brain Res., 206:166.

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev, P.I., and Lecours, A.-R., 1967, The myelogenetic cycles of regional maturation of the brain, in: “Regional development of the brain in early life,” Minkowski, A., ed., Blackwell Scientific Publications, Oxford, p. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Kind, P., Innocenti, G. (1990). The Development of Cortical Projections. In: Raymond, P.A., Easter, S.S., Innocenti, G.M. (eds) Systems Approaches to Developmental Neurobiology. NATO ASI Series, vol 192. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7281-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7281-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7283-7

  • Online ISBN: 978-1-4684-7281-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics