Excitonic Optical Nonlinearities in Polydiacetylene: The Mechanisms

  • B. I. Greene
  • J. Orenstein
  • S. Schmitt-Rink
  • M. Thakur
Part of the NATO ASI Series book series (NSSB, volume 194)


Over the past few years, dramatic progress has been made in both the characterization and understanding of the nonlinear optical properties of inorganic semiconductors. In what are now classic investigations, accurate quantitative measurements performed on high quality GaAs samples recorded the change in optical constants in response to an incident light field. This work explored both the response of bulk samples and, more recently, the response of reduced dimensional or quantum confined structures. An “exclusion principle” based theory, quantitatively predicting saturation of optical transitions in response to either resonant or nonresonant incident radiation, has been successful in explaining numerous experimental observations in GaAs based systems. In terms of bulk GaAs and conventional two-dimensional (2D) quantum confined structures (type I quantum well structures), there remains today little uncertainty as to what and how large the optical nonlinearities are.1


Optic Phonon Exciton State Nonlinear Optical Response Exciton Resonance Exciton Bohr Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a recent review, see S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Adv. Phys., in press.Google Scholar
  2. 2.
    D. S. Chemla and J. Zyss, eds., “Nonlinear Optical Properties of Organic Molecules and Crystals,” Academic, New York (1987).Google Scholar
  3. 3.
    B. I. Greene, J. Orenstein, R. R. Millard, and L. R. Williams, Chem. Phys. Lett. 139, 381 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    G. M. Carter, J. V. Hryniewicz, M. Thakur, Y. J. Chen, and S. Meyler, Appl. Phys. Lett. 49, 998 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    B. I. Greene, J. Orenstein, R. R. Millard, and L. R. Williams, Phys. Rev. Lett. 58, 2750 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    B. I. Greene, J. Orenstein, M. Thakur, and D. H. Rapkine, Mat. Res. Soc. Symp. Proc. 109, 159 (1988).CrossRefGoogle Scholar
  8. 8.
    B. I. Greene, J. F. Müller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, Phys. Rev. Lett. 61, 325 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    D. N. Batchelder, in: “Polydiacetylenes,” D. Bloor and R. R. Chance, eds., Matinus Nijhoff, Dordrecht (1985), p. 187.Google Scholar
  10. 10.
    S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Phys. Rev. B 32, 6601 (1985).ADSGoogle Scholar
  11. 11.
    F. Kajzar, L. Rothberg, S. Etemad, P. A. Chollet, D. Grec, A. Boudet, and T. Jedju, Opt. Commun. 66, 55 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    S. Suhai, J. Chem. Phys. 85, 611 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    F. Wudl and S. P. Bitler, J. Am. Chem. Soc. 108, 4685 (1986).CrossRefGoogle Scholar
  14. 14.
    S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phys. Rev. B 35, 8113 (1987).ADSGoogle Scholar
  15. 15.
    S. Schmitt-Rink and D. S. Chemla, Phys. Rev. Lett. 51, 2752 (1986); S. Schmitt-Rink, D. S. Chemla, and H. Haug, Phys. Rev. B 37, 941 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoc, Phys. Rev. Lett. 56, 2748 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    A. von Lehmen, D. S. Chemla, J. E. Zucker, and J. P. Heritage, Opt. Lett. 11, 609 (1986).ADSCrossRefGoogle Scholar
  18. 18.
    See the contributions by R. Zimmermann; W. Schäfer; C. Ell, J. F. Müller, K. El-Sayed, and H. Haug; M. Lindberg and S. W. Koch, in: Proc. Int. Conf. Optical Nonlinearity and Bistability of Semiconductors, August 22-25, 1988, Berlin, GDR; Phys. Stat. Sol. (b), in press.Google Scholar
  19. 19.
    G. M. Carter, Y. J. Chen, M. F. Rubner, D. J. Sandman, M. Thakur, and S. K. Tripathy, in Ref. 2, Vol. 2, p. 85.Google Scholar
  20. 20.
    W. J. Jones and B. P. Stoicheff, Phys. Rev. Lett. 18, 657 (1964).ADSCrossRefGoogle Scholar
  21. 21.
    A. L. Ivanov and L. V. Keldysh, Zh. Eksp. Teor. Fiz. 84, 404 (1982) [Sov. Phys.-JETP 51, 234 (1983)]; A. L. Ivanov, Zh. Eksp. Teor. Fiz. 90, 158 (1986) [Sov. Phys.-JETP 63, 90 (1986)].Google Scholar
  22. 22.
    G. S. Vygovskii, G. P. Golubev, E. A. Zhukov, A. A. Formichev, and M. A. Yakshin, Pisma Zh. Eksp. Teor. Fiz. 42, 134 (1985) [JETP Lett. 42, 164 (1985)].Google Scholar
  23. 23.
    W. P. Su and J. R. Schrieffer, Proc. Natl. Acad. Sci. U.S.A. 77, 5626 (1980).ADSCrossRefGoogle Scholar
  24. 24.
    S. Saikan, N. Hashimoto, T. Kushida, and K. Namba, J. Chem. Phys. 82, 5409 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    S. Schmitt-Rink, in Ref. 18.Google Scholar
  26. 26.
    G. J. Blanchard, J. P. Heritage, G. L. Baker, S. Etemad, and A.von Lehmen, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • B. I. Greene
    • 1
  • J. Orenstein
    • 1
  • S. Schmitt-Rink
    • 1
  • M. Thakur
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations