Real and Virtual Charge Polarizations in DC Biased Low-Dimensional Semiconductor Structures

  • Masamichi Yamanishi
Part of the NATO ASI Series book series (NSSB, volume 194)


Electric field effects on optical properties in mesoscopic structures, quantum wells (QW’s),1 quantum wires2 and quantum boxes (QB’s) or quantum dots2 have been attracting a great interest, both from stand points of physics and applications. In addition to conventional modulation scheme by external voltages, internal field modulations due to field screenings by real3,4 or virtual5,6 charges inside the DC-biased QWs, may give rise to unique and important applications including a low power optical bistable device and ultrafast optical nonlinear device.


Pump Pulse Pump Light Multiple Quantum Well Dephasing Time Multiple Quantum Well Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review, see D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, in: “Optical Nonlinearities and Instabilities in Semiconductors,” H. Haug, ed., Academic, Orlando (1988), Chap.13, pp.325–359.Google Scholar
  2. 2.
    D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, Electroabsorption of highly confined systems: theory of the quantum confined Franz-Keldysh effect in semiconductor quantum wires and dots, Appl. Phys. Lett. 52:2154 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    M. Yamanishi, Y. Lee, and I. Suemune, Optical bistability by charge-induced self feedback in quantum well structure, Optoelectronics-Devices and Technologies, 2:45 (1987).Google Scholar
  4. 4.
    J. W. Little, J. K. Whisnant, R. P. Leavitt, and R. A. Wilson, Extremely low-intensity optical nonlinearity in asymmetric coupled quantum wells, Appl. Phys. Lett. 51:1786 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    M. Yamanishi, Field-induced optical nonlinearity due to virtual transition in semiconductor quantum-well structures, Phys. Rev. Lett. 59:1014 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    D. S. Chemla, D. A. B. Miller, and S. Schmitt-Rink, Generation of ultra-short electrical pulses through screening by virtual population in biased quantum wells, Phys. Rev. Lett. 59:1018 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    M. Yamanishi and Y. Osaka, Part of the results were presented in technical digest of 16th International Conf. Quantum Electronics, paper no.WL-2, July, 1988, Tokyo.Google Scholar
  8. 8.
    M. Yamanishi, Y. Osaka, and M. Kurosaki, submitted to Phys. Rev. B-15, Rapid Communication.Google Scholar
  9. 9.
    M. Yamanishi and M. Kurosaki, Ultrafast optical nonlinearity by virtual charge polarization in dc-biased quantum well structures, IEEE J. Quantum Electron. QE-24:325 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    A. Shimizu, Excitons optical nonlinearity of quantum well structures in a static electric field, Phys. Rev. B-37:8527 (1988) and A. Shimizu, Optical nonlinearity induced by giant dipole moment of Wannier excitons, Phys. Rev. Lett. 61:613 (1988).Google Scholar
  11. 11.
    T. Hiroshima, E. Hanamura and M. Yamanishi, Exciton-exciton interaction and optical nonlinearity in biased semiconductor quantum wells, Phys. Rev. B-38:1241 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    For detailed description of generation mechanism of the voltage pulse, see M. Yamanishi, Ultrafast modulation of quantum states by virtual charge polarization in biased quantum well structure, to be published in J.Superlattices and Microstructures.Google Scholar
  13. 13.
    M. Yamanishi, M. Kurosaki, Y. Osaka and S. Datta, to be published in Proc. of 6th Int. Conf. Ultrafast Phenomena, Mt.Hiei (1988) Springer-Verlag.Google Scholar
  14. 14.
    A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, T. Masselink, and H. Morkoc, “Dressed excitons” in a multiple-quantum-well structure: evidence for an optical Stark effect with femtosecond response time, Phys. Rev. Lett. 56:2748 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    A. Von Lehmen, D. S. Chemla, J. E. Zucker and J. P. Heritage, Optical Stark effect on excitons in GaAs quantum wells, Optics Lett. 11:609 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures, Phys. Rev. B-32:6601 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    L. Schultheis, A. Honold, J. Kühl, K. Kohler, and C. W. Tu, Optical dephasing of homogeneously broadened two-dimensional exciton transitions in GaAs quantum wells, Phys. Rev. B-34:9027 (1986).ADSCrossRefGoogle Scholar
  18. 18.
    A Von Lehmen, J. E. Zucker, J. P. Heritage, and D. S. Chemla, Phonon sideband of quasi-two-dimensional excitons in GaAs quantum wells, Phys. Rev. B-35:6479 (1987).CrossRefGoogle Scholar
  19. 19.
    For a review see D. S. Chemla, D. A. B. Miller, and S. Schmitt-Rink, in:“optical Nonlinearities and Instabilities in Semiconductors,” H. Haug, ed., Academic, Orlando (1988), Chap.4., pp.83–120.Google Scholar
  20. 20.
    J. Fujimoto, Ms thesis, Hiroshima Univ. (March, 1988) unpublished.Google Scholar
  21. 21.
    M. Yamanishi and Y. Lee, Phase dampings of optical dipole moments and gain spectra in semiconductor lasers, IEEE J. Quantum Electron. QE-23:367 (1987).ADSCrossRefGoogle Scholar
  22. 22.
    Y. Arakawa and H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett. 40:939 (1982); E. Hanamura, Very large optical nonlinearity of semiconductor microcrystallites, Phys. Rev., B-37:1273 (1988) and references therein.ADSCrossRefGoogle Scholar
  23. 23.
    For instance, see, J.C. Slater, “Quantum Theory of Matter,” McGraw-Hill (1968), Chap.16, Sec.16-3 and 16-4.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Masamichi Yamanishi
    • 1
  1. 1.Department of Physical Electronics, Faculty of EngineeringHiroshima UniversitySaijocho, Higashi-Hiroshima 724Japan

Personalised recommendations