High Injection Effects in Quantum Well Lasers

  • P. Blood
Part of the NATO ASI Series book series (NSSB, volume 194)


While quantum well lasers offer the attractive feature of tuning the wavelength by adjusting the well width, interest in these devices is also stimulated by the reductions in threshold current which are predicted compared with conventional double heterostructure devices.1 Many of the predictions of threshold current (Ith) are based on ideal rectangular density of states functions,2 yet such calculations do not account for the observation that the laser emission occurs at a longer wavelength than that associated with the appropriate sub-band separation.3 Although some calculations have included intra-band scattering,4 or have relaxed the k-selection rules,5 these still fail to reproduce the wavelength behaviour correctly.


Laser Emission Threshold Current Gain Spectrum Threshold Current Density Width Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a recent review of the physics of quantum well lasers see: P. Blood, Reappraisal of GaAs-AlGaAs quantum well lasers, in Quantum Wells and Superlattices in Optoelectronic Devices and Integrated Optics, A.R. Adams ed, Proc SPIE 861, 34–41 (1987).Google Scholar
  2. 2.
    N.K. Dutta, “Calculated threshold current of GaAs quantum well lasers” J. Apl. Phys. 53:7211 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    K. Woodbridge, P. Blood, E.D. Fletcher and P.J. Hulyer, Short wavelength (visible) GaAs quantum well lasers grown by molecular beam epitaxy, Appl. Phys. Letts. 45:16 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    M. Asada, A. Kameyama, and Y. Suematsu, Gain and intervalence-band absorption in quantum well lasers, IEEE J. Quantum Electron. QE-20:754 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    P.T. Lansberg, M.S. Abrahams and M. Osinski, Evidence of no k-selection in gain spectra of quantum well AlGaAs laser diodes, IEEE J. Quantum Electron. QE-21:24 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    P. Blood, S. Colak and A.I. Kucharska, Influence of broadening and high injection effects on GaAs-AlGaAs quantum well lasers, IEEE J. Quantum Electron. QE-24:1593 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    P. Blood, E.D. Fletcher, P.J. Hulyer and P.M. Smowton, Emission wavelength of AlGaAs-GaAs multiple quantum well lasers, Appl. Phys. Letts. 48:1111 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    P. Blood, E.D. Fletcher and K. Woodbridge, Dependence of threshold current on the number of wells in AlGaAs-GaAs quantum well lasers, Appl. Phys. Letts. 47:193 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    S. Tarucha, H. Kobayashi, Y. Horikoshi and H. Okamoto, Carrier induced energy gap shrinkage in current-injection GaAs/AlGaAs MQW heterostructures, Jap. J. Appl. Phys. 23:874 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    G. Tränkle, H. Leier A Forchel, H. Haug, C. Ell, and G. Weimann, Dimensionality dependence of the band-gap renormalisation in two-and three-dimensional electron-hole plasmas in GaAs, Phys. Rev. Letts. 58:419 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    E. Zielinski, H. Schweizer, S. Hausser, R. Stuber, M. Pilkuhn and G. Weimann, Systematics of laser operation in GaAs/AlGaAs multi-quantum well lasers, IEEE J. Quantum Electron. QE-23:969 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    S. Colak, R. Eppenga and M.F.H. Schuurmans, Band mixing effects on quantum well gain, IEEE J. Quantum Eectron. QE-23:960 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    P. Blood, S. Colak and A.I. Kucharska, Temperature dependence of threshold current in GaAs/AlGaAs quantum well lasers, Appl. Phys. Letts. 52:599 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    P. Blood, E.D. Fletcher, K. Woodbridge, K.C. Heasman and A.R. Adams, Influence of the barriers on the temperature dependence of threshold current in GaAs/AalGaAs quantum well lasers. To be published.Google Scholar
  15. 15.
    P.T. Lansberg and D.J. Robbins, Lifetime broadening of a parabolic band edge of a pure semiconductor at various temperatures, Sol. State Electron. 28:137 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    D.J. Robbins, Lifetime broadening in quantum well lasers, in Novel Optoelectronic Devices, M.J. Adams ed, Proc. SPIE 800:34 (1987).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • P. Blood
    • 1
  1. 1.Philips Research LaboratoriesRedhill, SurreyEngland

Personalised recommendations