Optical Spectroscopy on Two- and One-Dimensional Semiconductor Structures

  • A. Forchel
  • G. Tränkle
  • U. Cebulla
  • H. Leier
  • B. E. Maile
Part of the NATO ASI Series book series (NSSB, volume 194)


Due to the enormous progress of epitaxial techniques many semiconductor materials can nowadays be fabricated with a previously unattained degree of perfection. In particular molecular beam epitaxy (MBE) and metalorganic vapour phase epitaxy (MOVPE) have been developed during the last decade.1,2 They allow the growth of high quality sequences of III-V-semiconductor materials. With these methods the growth can be controlled down to the level of individual atomic layers.3


Quantum Efficiency Quantum Wire Interparticle Distance Metalorganic Vapour Phase Epitaxy Electron Hole Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Weimann, W. Schlapp, Springer Series in Solid State Physics 53, 88 (1984). N.T. Linh, FestkörperproblemejAdvances in Solid State Physics, Vol. 23, 227 (1983). W.T. Tsang, J. Cryst. Growth 81 261 (1987).CrossRefGoogle Scholar
  2. 2.
    N. Watanabe, Y. Mori, Surf. Science 174, 10 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    M. Tanaka, H. Sakaki, J. Yoshino, T. Furuta, Surf. Science 176, 65 (1986).CrossRefGoogle Scholar
  4. 4.
    R. Dingle, Festkörperprobleme/Advances in Solid State Physics, Vol. XV, ed. by. H. Queisser (Vieweg, Braunschweig 1975), p. 21.Google Scholar
  5. 5.
    L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970).CrossRefGoogle Scholar
  6. 6.
    J. Cibert, P.M. Petroff, G.J. Dolan, S.J. Pearton, A.C. Gossard, J.H. English, Appl. Phys. Lett. 49, 1275 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    H. Temkin, G.J. Dolan, M.B. Panish, S.N.G. Chu, Appl. Phys. Lett. 50, 413 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    B.E. Maile, A. Forchel, R. Germann, A. Menschig, H.P. Meier, D. Grützmacher, J. Vac. Sci. Tech. B, to be published. A. Forchel, H. Leier, B.E. Maile, R. Germann, Festkörperprobleme/ Advances in Solid State Physics, Vol. 28, ed. by U. Rössler (Vieweg, Braunschweig 1988), p. 99.Google Scholar
  9. 9.
    Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    H. Hassan, H. Spector, J. Vac. Sci. Tech. A 3, 22 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    G. Tränkle, H. Leier, A. Forchel, H. Haug, C. Ell, G. Weimann, Phys. Rev. Lett. 58, 419 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    G. Tränkle, E. Lach, A. Forchel, F. Scholz, C. Ell, H. Haug, G. Weimann, G. Griffiths, H. Kroemer, S. Subbanna, Phys. Rev. B 36, 6712 (1987).ADSGoogle Scholar
  13. 13.
    A. Forchel, U. Cebulla, G. Tränkle, H. Kroemer, S. Subbanna, G. Griffiths Surf. Science 174, 143 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    U. Cebulla, G. Tränkle, U. Ziem, A. Forchel, G. Griffiths, H. Kroemer, S. Subbanna, Phys. Rev. B 37, 6278 (1988).ADSGoogle Scholar
  15. 15.
    H. Leier, A. Forchel, B.E. Maile, G. Weimann, Microcircuit Eng. 7 to be published.Google Scholar
  16. 16.
    W.F. Brinkmann, T.M. Rice, Phys. Rev. B 7, 1508 (1973).ADSGoogle Scholar
  17. 17.
    P. Vashishta, S.G. Das, K.S. Singwi, Phys. Rev. B 10, 5108 (1974).ADSGoogle Scholar
  18. 18.
    G.A. Thomas, T.M. Rice, J.C. Hensel, Phys. Rev. Lett. 33, 219 (1974).ADSCrossRefGoogle Scholar
  19. 19.
    M. Cappizi, S. Modesti, A. Frova, J.L. Staehli, M. Guzzi, RA. Logan, Phys. Rev. B 29, 2028 (1984).ADSGoogle Scholar
  20. 20.
    A. Forchel, H. Schweizer, G. Mahler, Phys. Rev. Lett. 51, 698 (1983).ADSCrossRefGoogle Scholar
  21. 21.
    C. Klingshirn, H. Haug, Phys. Rep. 70, 315 (1981).ADSCrossRefGoogle Scholar
  22. 22.
    P. Vashishta, R.K. Kalia, Phys. Rev. B 25, 6492 (1982).ADSGoogle Scholar
  23. 23.
    A. Forchel, B. Laurich, J. Wagner, W. Schmid, T.L. Reinecke, Phys. Rev. B 25, 2730 (1982).ADSGoogle Scholar
  24. 24.
    G. Tränkle, H. Leier, A. Forchel, G. Weimann, Surf. Science 174, 211 (1986).ADSCrossRefGoogle Scholar
  25. 25.
    This can be shown by the comparison of emission spectra which are calculated using the bulk effective masses for the valence band with spectra calculated from the correct non-parabolic dispersions. We are grateful to T.L. Reinecke and D. Broido, NRL, Washington DC, for the dispersion calculations.Google Scholar
  26. 26.
    P.T. Landsberg, Phys. stat. sol. 15, 623 (1966).ADSCrossRefGoogle Scholar
  27. 27.
    R.W. Martin, H.L. Störnier, Solid State Commun. 22, 523 (1977).ADSCrossRefGoogle Scholar
  28. 28.
    W. Schmid, Phys. stat. sol. (b) 94, 413 (1979).ADSCrossRefGoogle Scholar
  29. 29.
    P.T. Landsberg, private communication.Google Scholar
  30. 30.
    J.C. Maan, G. Belle, A. Fasolino, M. Altarelli, K. Ploog, Phys. Rev. B 30, 2253 (1984).ADSGoogle Scholar
  31. 31.
    S. Schmitt — Rink, C. Ell, H.E. Schmid, Solid State Commun. 52, 123 (1984).ADSCrossRefGoogle Scholar
  32. 32.
    see e.g. Landolt-Börnstein, “Numerical Data and Functional Relationships in Science and Technology, ed. by O. Madelung, M. Schulz and H. Weiss (Springer-Verlag, Berlin 1982), Group 3, Vol. 17, Part a.Google Scholar
  33. 33.
    R. Noack, Dissertation, Stuttgart, 1979.Google Scholar
  34. 34.
    K.J. Moore, G. Duggan, P. Dawson, C.T. Foxon, Phys. Rev. B 38, 5535 (1988).ADSGoogle Scholar
  35. 35.
    G. Griffiths, K. Mohammed, S. Subbanna, H. Kroemer, J.L. Merz, Appl. Phys. Lett. 43, 1059 (1983).ADSCrossRefGoogle Scholar
  36. 36.
    U. Cebulla, A. Forchel, G. Tränkle, G. Griffiths, S. Subbanna, H. Kroemer Superlattices and Microstructures 3, 4 (1987).ADSGoogle Scholar
  37. 37.
    R. Germann, A. Forchel, unpublished.Google Scholar
  38. 38.
    A. Forchel, U. Cebulla, G. Tränkle, E. Lach, T.L. Reinecke, H. Kroemer, S. Subbanna, G. Griffiths, Phys. Rev. Lett. 57, 3217 (1986).ADSCrossRefGoogle Scholar
  39. 39.
    A. Forchel, U. Cebulla, G. Tränkle, U. Ziem, H. Kroemer, S. Subbanna, G. Griffiths, Appl. Phys. Lett. 50, 182 (1987).ADSCrossRefGoogle Scholar
  40. 40.
    A. Forchel, U. Cebulla, G. Tränkle, W. Ossau, G. Griffiths, S. Subbanna, H. Kroemer, J. de Physique, suppl. au no 11, Vol. 48, C5–159.Google Scholar
  41. 41.
    G. Mayer, B.E. Maile, R. Germann, A. Forchel, H.P. Meier, Superlattices and Microstructures, 1988, to be published.Google Scholar
  42. 42.
    Y. Hirayama, Y. Suzuki, H. Okamoto, Jap. J. Appl. Phys. 24, 1498 (1985).ADSCrossRefGoogle Scholar
  43. 43.
    W.D. Laidig, N. Holonyak, M.D. Camras, K. Hess, J.J. Coleman, P.D. Dapkus, J. Bardeen, Appl. Phys. Lett. 387, 776 (1981).ADSCrossRefGoogle Scholar
  44. 44.
    J.J. Coleman, P.D. Dapkus, C.G. Kirkpatrick, M.D. Camras, N. Holonyak, Appl. Phys. Lett. 40, 904 (1982).ADSCrossRefGoogle Scholar
  45. 45.
    H. Leier, A. Forchel, H. Rothfritz, G. Weimann, to be published.Google Scholar
  46. 46.
    J.F. Ziegler, J.P. Biersack, U. Littmark, “The stopping and range of ions in solids”, ed. by. J.F. Ziegler, Vol. 1 (Pergamon Press, London 1985).Google Scholar
  47. 47.
    L.W. Wayne, M. Fukuma, J. Appl. Phys. 60, 1555 (1986).ADSCrossRefGoogle Scholar
  48. 48.
    Y. Hirayama, S. Tarucha, Y. Suzuki, H. Okamoto, Phys. Rev. B 37, 2774 (1988).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. Forchel
    • 1
  • G. Tränkle
    • 2
  • U. Cebulla
    • 1
  • H. Leier
    • 1
  • B. E. Maile
    • 1
  1. 1.4. Physikalisches InstitutUniversität StuttgartStuttgart 80Germany
  2. 2.W. Schottky InstitutGarchingGermany

Personalised recommendations