Excitonic Enhancement of Stimulated Recombination in GaAs/AlGaAs Multiple Quantum Wells

  • J. L. Oudar
Part of the NATO ASI Series book series (NSSB, volume 194)


The transient behavior of absorption saturation in GaAs/AlGaAs multiple quantum wells is experimentally studied under conditions where stimulated emission governs the absorption recovery. It is found that stimulated recombination is strongly dependent on temperature in the range 80-160 K and that the spectral shape of the absorption edge in the small gain regime is much steeper than expected from uncorrelated electron and hole population distributions. These features are interpreted as a manifestation of the strong electron-hole correlations theoretically expected in 2D structures. Finally a possible application of stimulated recombination to ultrafast optical switching is presented.


Quantum Well Absorption Saturation Spot Diameter Multiple Quantum Gain Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. S. Knox, “Theory of excitons”, Sol. State Phys. Sup. 5, Acad. Press, NY (1963).Google Scholar
  2. 2.
    D. S. Chemla and D. A. B. Miller, J. Opt. Soc. Amer., B2, 1155 (1985).ADSGoogle Scholar
  3. 3.
    L. V. Keldysh, Zh. Eksp. Teor. Fiz. Pis’ma Red 29, 716 (1979) [Sov. Phys. JETP Lett. 29, 658 (1979)].ADSGoogle Scholar
  4. 4.
    H. Haug and S. Schmitt-Rink, Prog. Quantum Electron. 9, 3 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    R. Zimmermann, Phys. Stat. Sol.(b) 146, 371 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    L. Banyai and S.W. Koch, Z. Phys. B 63, 283 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    W.H. Knox, R. L. Fork, M. C. Downer, D.A.B. Miller, D.S. Chemla, C.V. Shank, A. C. Gossard and W. Wiegmann, Phys. Rev. Lett. 54, 1306 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    S. Schmitt-Rink, D. S. Chemla and D. A. B. Miller, Phys. Rev. B32, 6601 (1985).ADSGoogle Scholar
  9. 9.
    S. Schmitt-Rink, C Ell and H. Haug, Phys. Rev. B33, 1183 (1986).ADSGoogle Scholar
  10. 10.
    J. Dubard, J.L. Oudar, F. Alexandre, D. Hulin and A. Orszag, Appl. Phys. Lett., 50, 821 (1987); erratum ibid. 50, 1696 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    D. Hulin, M. Joffre, A. Migus, J.L. Oudar, J. Dubard and F. Alexandre, J. de Physique (Paris) Colloque C5, 267 (1987).Google Scholar
  12. 12.
    J.L. Oudar and J.A. Levenson, paper ThB7, XVIth Internat. Conf. on Quantum Electron., Tokyo (July 1988).Google Scholar
  13. 13.
    N. K. Dutta, Electron. Lett. 18, 451 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    G. D. Mahan, Phys. Rev. 153, 882 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    G. Livescu, D. A. B. Miller, D. S. Chemla, M. Ramaswamy, T. Y. Chang, N. Sauer, A. C. Gossard and J. H. English, IEEE J. Quantum Electron. 24, 1677 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    J. L. Oudar, C. Tanguy, J. P. Chambaret and D. Hulin, in “Ultrafast Phenomena VI”, Springer, New-York 1988.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. L. Oudar
    • 1
  1. 1.Centre National d’Etudes des TélécommunicationsBagneuxFrance

Personalised recommendations