Advertisement

Spectral Holeburning and Four-Wave Mixing in InGaAs/InP Quantum Wells

  • John Hegarty
  • K. Tai
  • W. T. Tsang
Part of the NATO ASI Series book series (NSSB, volume 194)

Abstract

Excitons in III-V quantum well structures have been given rise to a broad variety of new physics [1] and device applications [2]. The linear optical properties of the excitons have been exploited to study effects of reduced dimensionality and of materials properties [3] while the nonlinear properties form the basis for a potential new family of switching devices [4]. The lowest energy heavy hole exciton is of most interest central issue for the understanding of new physical phenomena and new devices is the nature of the interaction of the exciton with its static and dynamic environment. Interface roughness leads to inhomogeneous broadening of the exciton energy which can be observed in absorption and luminescence [5]. The roughness affects the in-plane localisation properties of the exciton [6]. The interaction of the exciton with acoustic phonons is in turn strongly determined by the localisation properties [7]. A proper understanding of the factors governing localisation is consequently necessary. To date, GaAs/GaA1As quantum wells grown epitaxially have shown both localised and delocalised excitons at low temperature [8] while especially high quality samples have shown delocalised excitons only [9]. The scenario where all excitons are localised has only recently been observed in III-V quantum wells [10]. In this paper we describe in detail how complete localisation can be achieved in the structure InGaAs/InP. The additional disorder causing localisation is introduced by alloying the well. At the same time inelastic scattering leading to spectral diffusion is considerably enhanced over GaAs quantum wells. The exciton dynamics are measured using spectral holeburning and time-resolved four wave-mixing.

Keywords

Random Potential Interface Roughness Spectral Diffusion Localise Exciton Linear Optical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.J. Kelly and R.J. Nicholas: Reports of Prog. in Physics 48, 1699 (1985).ADSCrossRefGoogle Scholar
  2. [2]
    C. Weisbuch: Semiconductors and Semimetals, ed. R. Willardson and A.C. Beer, Academic Press (1986).Google Scholar
  3. [3]
    R.C. Miller and D.A. Kleinman: J. Lum. 30, 520 (1985).ADSCrossRefGoogle Scholar
  4. [4]
    D.S. Chemla and D.A.B. Miller J. Opt. Soc. B 2, 115 (1985).Google Scholar
  5. [5]
    C. Weisbuch, R. Dingle, A.C. Gossard, and W. Wiegmann: Solid State Comm. 38, 709 (1981).ADSCrossRefGoogle Scholar
  6. [6]
    J. Hegarty and M.D. Sturge: J. Opt. Soc. 82, 1143 (1985).ADSGoogle Scholar
  7. [7]
    T. Takagahara: Phys. Rev. B 32, 7013 (1985).ADSGoogle Scholar
  8. [8]
    J. Hegarty, L. Goldner, and M.D. Sturge: Phys Rev. B 30, 7346 (1984).ADSGoogle Scholar
  9. [9]
    L. Schultheis, A. Honold, J. Kühl, K. Kohler, and C.W. Tu: Phys. Rev. B 34, 9072 (1986).Google Scholar
  10. [10]
    J. Hegarty, K. Tai, and W.T. Tsang: Phys. Rev. B (Oct. 15, 1988).Google Scholar
  11. [11]
    J. Hegarty, K. Tai, and W.T. Tsang: The Physics and Fabrication of Microstructures and Devices, ed. M.J. Kelly and C. Weisbuch, Springer, Berlin (1986).Google Scholar
  12. [12]
    R. Zallen: The Physics of Amorphous Solids, Wiley, New York (1983).CrossRefGoogle Scholar
  13. [13]
    N.F. Mott and E.A. Davis: Electronic Processes in Noncrystalline Materials, 2nd ed. Clarendon, Oxford (1979).Google Scholar
  14. [14]
    L. Schultheis: J. Hegarty: J. Phys., Paris, Colloq. C 7, 167 (1985).Google Scholar
  15. [15]
    W.T. Tsang: Appl. Phys. Letters 45, 1234 (1984).ADSCrossRefGoogle Scholar
  16. [16]
    D.F. Welch, G.W. Wicks, and L.F. Eastman: Appl. Phys. Letters 46, 991 (1985).ADSCrossRefGoogle Scholar
  17. [17]
    R.M. Macfarlane: J. Lum. 36, 179 (1987).ADSCrossRefGoogle Scholar
  18. [18]
    See for example G.J. Small: Spectroscopy and Excitation Dynamics of Condensed Molecular Systems, V.M. Agranovitch and R.M. Hochstrasser, North Holland, Amsterdam (1983), p. 515.Google Scholar
  19. [19]
    R.M. Macfarlane and R.M. Shelby: Opt. Comm. 45, 46 (1983).ADSCrossRefGoogle Scholar
  20. [20]
    A. Szabo: Phys. Rev. B 11, 4512 (1975).ADSGoogle Scholar
  21. [21]
    J. Hegarty and M.D. Sturge: Proceedings of the International Conference of Luminescence, ed. W.M. Yen and J.C. Wright, North Holland, Amsterdam (1984). p. 494.Google Scholar
  22. [22]
    L.F. Mollenhauer, R.H. Stolen, and J.P. Gordon: Phys. Rev. Letters 45, 1095 (1980).ADSCrossRefGoogle Scholar
  23. [23]
    T. Heinz, S.L. Palfrey, and K.B. Eisenthal: Opt. Letters 9, 359 (1984).ADSCrossRefGoogle Scholar
  24. [24]
    K. Tai, J. Hegarty, and W.T. Tsang: App. Phys. Letters 51, 152 (1987).ADSCrossRefGoogle Scholar
  25. [25]
    T. Yajima and Y. Taira: J. Phys. Soc. Japan 47, 1620 (1979).ADSCrossRefGoogle Scholar
  26. [26]
    T. Yajima, Y. Ishida, and Y. Taira: Picosecond Phenomena II, eds. R.M. Hochstrasser, W. Kaiser, and C.V. Shank, Springer, Berlin (1980), p. 190.Google Scholar
  27. [27]
    L. Schultheis, J. Kühl, A. Harold, and C.W. Tu: Phys. Rev. Letters 57, 1797 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • John Hegarty
    • 1
  • K. Tai
    • 2
  • W. T. Tsang
    • 2
  1. 1.Physics DepartmentTrinity CollegeDublin 2Ireland
  2. 2.AT&T Bell LabsMurray HillUSA

Personalised recommendations