Ultrafast Dynamics of Excitons in GaAs Single Quantum Wells

  • J. Kühl
  • A. Honold
  • L. Schultheis
  • C. W. Tu
Part of the NATO ASI Series book series (NSSB, volume 194)


Phase and orientational relaxation of excitons in a 12nm GaAs single quantum well are measured by time-resolved degenerate four-wave-mixing. Dephasing studies of excitons subjected to collisions with acoustic phonons, free carriers or incoherent excitons are applied to analyze the respective interaction mechanisms. Comparison of the results with data for 3D excitons in bulk GaAs reveal a distinct dependence of the relaxation dynamics as well as the interaction of excitons with other quasi-particles on the dimensionality of the system. Finally we show that the exciton lifetime increases with decreasing dephasing time because the oscillator strength of the excitonic transition varies with the size of the coherence volume of the exciton wavefunction.


Free Carrier Quantum Well Acoustic Phonon Radiative Lifetime Single Quantum Well 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. S. Chemla, S. Schmitt-Rink, and D. A. B. Miller, “Nonlinear Optical Properties of Semiconductor Quantum Wells”, in: “Nonlinear Optical Properties of Semiconductors”, H. Haug, ed. Academic New York, (1988) and D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Wiegmann, “Room Temperature Excitonic Nonlinear Absorption and Refraction in GaAs/AlGaAs Multiple Quantum Well Structures”, IEEE J. Quant. Electr. QE-20, 265 (1984).Google Scholar
  2. 2.
    H. Haug and S. Schmitt-Rink, “Basic Mechanisms of the Optical Nonlinearities of Semiconductors Near the Band Edge”, J. Opt. Soc. Am. B2, 1135 (1985) and 1. “Electron Theory of Optical Properties of Laser-Excited Semiconductors”, Progr. Quant. Electr. 9, 3 (1984).ADSGoogle Scholar
  3. 3.
    D. S. Chemla and D. A. B. Miller, “Room Temperature Excitonic Nonlinear-Optical Effects in Semiconductor Quantum-Well Structures”, J. Opt. Soc. Am. B2, 1155 (1985).ADSGoogle Scholar
  4. 4.
    D. A. B. Miller, J. S. Weiner and D. S. Chemla, “Electric-Field Dependence of Linear Optical Properties in Quantum Well Structures: Waveguide Electrabsorption and sum Rules”, IEEE J. Quant. Electron. QE-22, 1816 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    L. Schultheis, J. Kuhl, A. Honold and C. W. Tu, “Picosecond Phase Coherence and Orientational Relaxation of Excitons in GaAs”, Phys. Rev. Lett. 57, 1797 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    L. Schultheis, J. Kühl, A. Honold and C.W. Tu, “Ultrafast Relaxation of Nonthermal Wannier Excitons in GaAs”, in: Ultrafast Phenomena V, Springer Series in Chemical Physics 46, Eds. G. R. Fleming and A. E. Siegman (Springer, Berlin 1986), p. 201.Google Scholar
  7. 7.
    L. Schultheis, J. Kühl, A. Honold and C. W. Tu, “Ultrafast Relaxation of Nonthermal Excitons in GaAs” in: Proceedings of 18th Int. Conf. on the Physics of Semiconductors, Ed. O. Engström (World Scientific, Singapore 1987), p. 1397.Google Scholar
  8. 8.
    L. Schultheis, J. Kühl, A. Honold and C. W. Tu, “Optical Dephasing of Wannier Excitons in GaAs” in: Excitons in Confined Systems, Eds. R. Del Sole, A. D. Andrea and A. Lapiccirella (Springer, Berlin, 1988).Google Scholar
  9. 9.
    H. J. Eichler, P. Guenter and D. W. Pohl, “Laser-Induced Dynamic Gratings”, Springer Series in Opt. Sciences, Springer Verlag, Berlin, Heidelberg, New York (1986).Google Scholar
  10. 10.
    B. S. Wherrett, A. L. Smirl and T. F. Bogess, “Theory of Degenerate Four-Wave-Mixing in Picosecond Excitation-Probe Experiments”, IEEE J. Quant. Electr. QE-19, 680 (1983), and A. L. Smirl, T. F. Bogess, B. S. Wherrett, G. P. Perryman and A. Miller, “Picosecond Transient Orientational and Concentration ratings in Germanium”, IEEE J. Quant. Electr. QE-19, 690 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    L. Schultheis, J. Kühl, A. Honold and C. W. Tu, “Ultrafast Phase Relaxation of Excitons via Exciton-Exciton and Exciton-Electron Collisions”, Phys. Rev. Lett. 57, 1635 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    J. Feldmann, G. Peter, E. O. Goebel, P. Dawson, K. Moore, C. Foxon and J. Elliot, “Linewidth Dependence of Radiative Exciton Lifetimes in Quantum Wells”, Phys. Rev. Lett. 59, 2337 (1987) and Phys. Rev. Lett. 60, 243 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    A. Honold, L. Schultheis, J. Kühl and C. W. Tu, “Reflected Degenerate Four-Wave-Mixing on GaAs Single Quantum Wells”, Appl. Phys. Lett. 52, 2105 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    L. Schultheis, A. Honold, J. Kühl, K. Koehler and C. W. Tu, “Optical Dephasing of Homogeneously Broadened 2D Exciton Transitions in GaAs Quantum Wells”, Phys. Rev. B. 34, 9027 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    S. Schmitt-Rink, D. S. Chemla and D. A. B. Miller, “Theory of Transient Excitonic 3. Optical Nonlinearities in Semiconductor Quantum Well Structures”, Phys. Rev. B 32, 6601 (1985).ADSGoogle Scholar
  16. 16.
    T. Ando, A. B. Fowler and F. Stern, “Electronic Properties of 2D Systems”, Rev. Mod. Phys. 54, 437 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    An improved analysis of the diffraction curves taking into account the inhomogeneous line broadening is presently under study. The absolute values for T2 may increase by about 20-30% after this correction, but the general statements of this paper will remain unaffected.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. Kühl
    • 1
  • A. Honold
    • 1
  • L. Schultheis
    • 2
  • C. W. Tu
    • 3
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Germany
  2. 2.ASEA Brown Boveri Corp. ResearchBadenSwitzerland
  3. 3.AT&T Bell LabsMurray HillUSA

Personalised recommendations