Biexcitonic Nonlinearity in Quantum Wires

  • L. Banyai
  • I. Galbraith
  • H. Haug
Part of the NATO ASI Series book series (NSSB, volume 194)


The peculiarities of the quasi-one-dimensional exciton and biexciton are analyzed theoretically. The calculated binding energies and wave functions are used within a simple boson model to predict biexcitonic optical nonlinearities to be expected in GaAs/GaxAl1−x Quantum Well Wires. The results are compared to the corresponding ones in Quantum Wells and bulk semiconductor. An assessment of inhomogeneous line broadening due to a Gaussian distribution of quantum well wire radii is also presented.


Binding Energy Quantum Well Ground State Wave Function Calculated Binding Energy Confinement Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.M. Petroff, A.C. Gossard, R.A. Logan and W. Wiegmann, Appl. Phys. Lett., 41, 635 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    A.P. Fowler, A. Hartstein and R.A. Webbl, Phys. Rev. Lett. 48, 196 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Arakwa, K. Vahala, A. Yariv and K. Lau, Appl. Phys. Lett., 47, 1142 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    Yia-Chung Chang, L. L. Chang and L. Esaki, Appl. Phys. Lett., 47, 1324 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    J. Cibert, P.M. Petroff, G.J. Dolan, S.J. Pearton, A.C. Gossard and J.H. English, Appl. Phys. Lett. 49, 1275 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    L. Banyai, I. Galbraith, C. Ell and H.Haug, Phys. Rev. B36, 6099 (1987).ADSGoogle Scholar
  7. 7.
    L. Banyai, I. Galbraith and H. Haug, Phys. Rev. B (1988) (to be published)Google Scholar
  8. 8.
    I. Abram and A Maruani, Phys. Rev. B26, 4759 (1982).ADSGoogle Scholar
  9. 9.
    H. Haug, J. Lumin. 30, 171 (1985).CrossRefGoogle Scholar
  10. 10.
    H.H. Kranz and H. Haug, J. Lumin., 34, 337 (1986).CrossRefGoogle Scholar
  11. 11.
    J.Y. Bigot and B. Hönerlage, Phys. Stat. Sol.(b) 121, 649 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    R. Loudon, Am. J. Phys. 44 1064 (1976).CrossRefGoogle Scholar
  13. 13.
    T. Kodama, Y. Osaka, M. Yamanishi, Jap. J. Appl. Phys., 24, 1370 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    J.W. Brown and H.N. Spector, Phys. Rev. B35, 3009 (1987).ADSGoogle Scholar
  15. 15.
    G.W. Bryant, Phys. Rev., B29, 6632 (1984).ADSGoogle Scholar
  16. 16.
    E. Hanamura and H. Haug, Phys. Rep. 33, 209 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    W.F. Brinkman, T.M. Rice, B. Bell, Phys. Rev., B8, 1570 (1973).ADSGoogle Scholar
  18. 18.
    R.C. Miller, D.A. Kleinman, A.C. Gossard and O. Munteanu, Phys. Rev. B25, 6545 (1982).ADSGoogle Scholar
  19. 19.
    D.A. Kleinman, Phys. Rev. B28, 871 (1983)ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • L. Banyai
    • 1
  • I. Galbraith
    • 1
  • H. Haug
    • 1
  1. 1.Institut für Theoretische PhysikUniversität FrankfurtFrankfurt am MainFederal Republic of Germany

Personalised recommendations