Biexcitons in ZnSe Quantum Wells

  • A. Mysyrowicz
  • D. Lee
  • Q. Fu
  • A. V. Nurmikko
  • R. L. Gunshor
  • L. A. Kolodziejski
Part of the NATO ASI Series book series (NSSB, volume 194)


The quasi-2-dimensional character of electron and hole wavefunctions in a semiconductor quantum well leads to an enhancement of the exciton binding energy and oscillator strength. This effect has been justified theoretically and well confirmed experimentally by many authors in the case of GaAs quantum wells [1]. For similar reasons, the forced confinement of carriers with opposite charge in the same ultrathin layer is expected to increase the biexciton stability. A calculation by Kleiman [2] predicts that in the best case, the biexciton binding energy can exceed half the Rydberg (see Fig. 1). However, on experimental side, there is so far very little evidence [3] for biexcitons in quantum wells in general and GaAs quantum wells in particular despite the considerable amount of spectroscopy studies performed in this type of material. This probably reflects the fact that the binding energy of the biexciton in bulk GaAs is very small to start with, so that it remains small on an absolute scale even after confinement enhancement.


Excitation Spectrum Exciton Binding Energy Free Exciton Forced Confinement Biexciton Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    For a recent review see: Semiconductors and Semimetals, 24 Academic Press, ed. R. DingleGoogle Scholar
  2. [2]
    D.A. Kleinman, Phys. Rev. B 28, 871 (1983)ADSCrossRefGoogle Scholar
  3. [3]
    There is only one report of biexciton in GaAs: R.C. Miller, D.A. Kleinman, A.C. Gossard, and O. Munteanu, Phys. Rev. B 25, 6545 (1982)ADSCrossRefGoogle Scholar
  4. [4]
    L.A. Kolodziejski, R.L. Gunshor, N. Otsuka, S. Datta, W.H. Becker, and A.V. Nurmikko, IEEE J. Quantum Electronics 22, 1666 (1986)ADSCrossRefGoogle Scholar
  5. [5]
    For a review of ZnSe quantum well properties see for instance A.V. NurmikkoGoogle Scholar
  6. [6]
    Q. Fu, D. Lee, A. Mysyrowicz, A.V. Nurmikko, R.L. Gunshor, and L.A. Kolodziejski, Phys. Rev. B 37, 8791 (1988)ADSCrossRefGoogle Scholar
  7. [7]
    P.O. Gourley and J.P. Wolte, Phys. Rev. B 25, 6338 (1982).ADSGoogle Scholar
  8. [8]
    D. Lee et al., unpublishedGoogle Scholar
  9. [9]
    G. Lampel in: Proc. 12th Intern. Conference on the Physics of Semiconductors, Stuttgart, ed. M.H. Pilkuhn (1974), p. 743Google Scholar
  10. [10]
    E. Hanamura, S. State Comm. 12, 951 (1973)ADSCrossRefGoogle Scholar
  11. [11]
    G.M. Gale and A. Mysyrowicz, Phys. Rev. Letters 32, 727 (1974)ADSCrossRefGoogle Scholar
  12. [12]
    Y. Nozue, M. Itho, and K. Cho, J. Phys. Soc. Japan 50, 889 (1981)ADSCrossRefGoogle Scholar
  13. [13]
    K.C. Shaklee, R.F. Leheny, and R.E. Nahory, Phys. Rev. Letters 26, 888 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. Mysyrowicz
    • 1
    • 2
  • D. Lee
    • 3
  • Q. Fu
    • 3
  • A. V. Nurmikko
    • 3
  • R. L. Gunshor
    • 4
  • L. A. Kolodziejski
    • 4
  1. 1.G. P. S. Ecole Normale SuperieureParisFrance
  2. 2.L. O. A., ENSTA-Ecole PolytechniquePalaiseauFrance
  3. 3.Department of PhysicsBrown UniversityProvidenceUSA
  4. 4.School of Electrical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations