Intrinsic Optical Bistability and Collective Nonlinear Phenomena in Periodic Coupled Microstructures: Model Experiments

  • Dieter Jäger
  • Armin Gasch
  • Karl Moser
Part of the NATO ASI Series book series (NSSB, volume 194)


Because of its potential applications as optical switching or logic elements and memory devices for digital optical information processing, optical bistability (OB) has generated a great deal of interest [1]. In particular, intrinsic OB devices have attracted much attention because no resonators or external feedback structures are needed [2]. The mechanism is generally traced back to a nonlocal nonlinearity on the basis of induced absorption [3].


Optical Bistability Multiple Quantum Well Excitation Density Nonlinear Optical Response Nonlinear Schrodinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    see for example: W. Firth, N. Peyghambarian, and A. Tallet (ed.), “Optical Bistability IV”, J. de Phys., Coll. C 2, Les Editions de Physique, Les Ulis (1988).Google Scholar
  2. 2.
    D. A. B. Miller, A. C. Gossard, and W. Wiegmann, Optical bistability due to increasing absorption, Opt. Lett. 9: 162 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    H.M. Gibbs, G.R. Olbright, N. Peyghambarian, H.E. Schmidt, S.W. Koch, and H. Haug, Kinks: Logitudinal excitation discontinuities in increasing absorption optical bistability, Phys. Rev. A 32: 692 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    D.S. Chemla and D.A.B. Miller, Mechanism for enhanced optical nonlinearities and bistability by combined dielectric-electronic confinement in semiconductor microcrystallites, Opt. Lett. 11: 522 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    S. Schmitt-Rink, D.A.B. Miller, and D.S. Chemla, Theory of the linear and nonlinear optical properties of semiconductor microcrystallites, Phys. Rev. B 35: 8113 (1987-11).ADSCrossRefGoogle Scholar
  6. 6.
    E. Hamamura, Very large optical nonlinearity of semiconductor microcrystallites, Phys. Rev. B 37: 1273 (1988-II).ADSCrossRefGoogle Scholar
  7. 7.
    H.G. Winful, J.H. Marburger, and E. Garmire, Theory of bistability in nonlinear distributed feedback structures, Appl. Phys. Lett. 35: 379 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    H.G. Winful and G.D. Coopermann, Self-pulsing and chaos in distributed feedback bistable optical devices, Appl. Phys. Lett. 40: 298 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    H.G. Winful and G.I. Stegemann, Applications of nonlinear periodic structures in guided wave optics, Proc. SPIE 517: 214 (1984).Google Scholar
  10. 10.
    W. Chen and D.L. Mills, Gap solitons and the nonlinear optical response of superlattices, Phys. Rev. Lett. 58: 160 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    W. Chen and D.L. Mills, Optical response of nonlinear multilayer structures: Bilayers and Superlattices, Phys. Rev. B 36: 6269 (1987–11).Google Scholar
  12. 12.
    D. Jäger, Characteristics of travelling waves along the non-linear transmission lines for monolithic integrated circuits: A review, Int. J. Electronics 58: 649 (1985).CrossRefGoogle Scholar
  13. 13.
    D. Jäger, Experiments on KdV solitons, J. Phys. Soc. Jpn. 51: 1686 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    D. Jäger, Large optical nonlinearities in hybrid semiconductor devices, J. Opt. Soc. Am. B, submitted.Google Scholar
  15. 15.
    A. Gasch, T. Berning, and D. Jäger, Generation and parametric amplification of solitons in a nonlinear resonator with a Korteweg-de Vries medium, Phys. Rev. A, RC 34: 4528 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    H. Kuhlmann, On the propagation of harmonic waves in nonlinear conservative systems, internal report, Univ. Münster, unpublished (1982).Google Scholar
  17. 17.
    K. Muroya, N. Saitoh, and S. Watanabe, Experiments on lattice soliton by nonlinear LC circuit — Observation of a dark soliton, J. Phys. Soc. Jpn. 51: 1024 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    J.E. Sipe, Nonlinear optical properties of periodic composite materials, paper TuE1, presented at the Top. Meeting on Nonlinear Optical Properties of Materials, Troy N.Y. (1988).Google Scholar
  19. 19.
    A.C. Scott, The electrophysics of a nerve fiber, Rev. Mod. Phys. 47: 487 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    D. Jäger, On properties and applications of nonlinear waves, unpublished work (1979).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Dieter Jäger
    • 1
  • Armin Gasch
    • 1
  • Karl Moser
    • 1
  1. 1.Institut für Angewandte PhysikUniversität MünsterMünsterGermany

Personalised recommendations