Advertisement

Optical Nonlinearities and Femtosecond Dynamics of Quantum Confined CdSe Microcrystallites

  • N. Peyghambarian
  • S. H. Park
  • R. A. Morgan
  • B. Fluegel
  • Y. Z. Hu
  • M. Lindberg
  • S. W. Koch
  • D. Hulin
  • A. Migus
  • J. Etchepare
  • M. Joffre
  • G. Grillon
  • A. Antonetti
  • D. W. Hall
  • N. F. Borrelli
Part of the NATO ASI Series book series (NSSB, volume 194)

Abstract

Pump-probe spectroscopic techniques with nanosecond pulses are used to investigate the size quantization effects in CdSe microcrystallites in glass matrices (quantum dots). Nonlinear properties of the transitions between quantum confined electron and hole states are reported for low temperatures and at room temperature. Femtosecond four-wave mixing and differential transmission spectroscopic techniques were also employed to study the excited state dynamics and relaxation times of the quantum dots. The homogeneous and inhomogeneous contributions to the lowest electronic transitions are measured by femtosecond spectral hole burning at various temperatures. The inhomogeneous linewidth is due to size and shape distribution of the crystallites. Our experiments indicate that the hole-width increases with increasing light intensity. The optical nonlinearities as a function of microcrystallite size were investigated using single beam saturation experiment for the three quantum confined samples. A simple absorption saturation model was used to analyze the data. The results indicate that the saturation intensity is larger for smaller semiconductor sizes. Therefore, the index change per unit of intensity, Δn/I which is proportional to (α-αB)/Is is larger for larger sizes. Here, Δn is the index change, α is the absorption at the peak of the transition, αB is the background absorption, and Is is the saturation intensity.

Keywords

Heat Treatment Temperature Nonlinear Optical Property Pump Intensity Quantum Confinement Effect Pump Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).Google Scholar
  2. 2.
    L. E. Brus, J. Chem. Phys. 80, 4403 (1984); L. E. Brus, IEEE J. Quantum Electron, QE-22, 1909 (1986).Google Scholar
  3. 3.
    A. I. Ekimov and A. A. Onushchenko, Sov. Phys. Semicond. 16, 775 (1982).Google Scholar
  4. 4.
    L. Banyai, M. Lindberg, and S. W. Koch, Opt. Lett. 13, 212 (1988) and Phys. Rev. B38, October 15 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phy. Rev. B 35, 8113 (1987).ADSGoogle Scholar
  6. 6.
    E. Hanamura, Phys. Rev. B 37, 1273 (1988).ADSGoogle Scholar
  7. 7.
    U. Woggon and F. Henneberger, J. De Physique (Optical Bistability IV). C2 255 (1988).Google Scholar
  8. 8.
    Y. Massamuto, H. Sugawara, and M. Yamazaki, Proc. of IQEC′88 (1988).Google Scholar
  9. 9.
    T. Takagahara, Proc. of IQEC′88 P.620 (1988)Google Scholar
  10. 10.
    M. A. Reed, R. T. Bate, K. Bradshaw, W. M. Duncan, W. R. Frensley, J. W. Lee, and H. D. Shih, J. Vac. Sci. Technol. 4, 358 (1986).ADSGoogle Scholar
  11. 11.
    K. Kash, A. Scherer, J. M. Worlock, H. G. Craighead, and M. C. Tamargo, Appl. Phys. Lett 49, 1043 (1986).ADSGoogle Scholar
  12. 12.
    J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, and J. H. English, Appl. Phys. Lett. 49, 1275 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    N. F. Borrelli, D. W. Hall, H. J. Holland, and D. W. Smith, J. Appl. Phys. 61, 5399 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    P. Roussignol, D. Ricard, C. Hitzanis, and N. Neuroth, Proc. of IQEC′88, P.52 (1988).Google Scholar
  15. 15.
    Y. Wang, W. Mahler, A. Suna, E. F. Hilinski, and P. A. Lucas, Proc. of IQEC′88, P.544 (1988).Google Scholar
  16. 16.
    H. M. Gibbs, Optical Bistablilty: Controlling Light with Light (Academic Press, New York, 1985) Google Scholar
  17. 17.
    D. S. Chemla and D. A. B. Miller, JOSA B 2, 1155 (1985).ADSGoogle Scholar
  18. 18.
    N. Peyghambarian and H. M. Gibbs, JOSA B 2, 1215 (1985).ADSGoogle Scholar
  19. 19.
    R. K. Jain, and R. C. Lind, JOSA 73, 647 (1983).ADSCrossRefGoogle Scholar
  20. 20.
    P. Roussignol, D. Ricard, K. C. Rustagi, and C. Flytzanis, Opt. Commun. 55, 143, (1985).ADSCrossRefGoogle Scholar
  21. 21.
    S. S. Yao, C. Karaguleff, A. Gabel, R. Fortenberry, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 46, 801 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    G. R. Olbright, N. Peyghambarian, S. W. Koch, and L. Banyai, Opt. Lett. 12, 413 (1987); Appl. Phys. Lett. 48, 1184 (1986); V. Williams, G. R. Olbright, B. Fluegel, S. W. Koch, and N. Peyghambarian, to be published in J. Mod. Opt., Dec. 1988.ADSCrossRefGoogle Scholar
  23. 23.
    M. C. Nuss, W. Zinth, and W. Kaiser, Appl. Phys. Lett. 49, 1717 (1987).ADSCrossRefGoogle Scholar
  24. 24.
    S. C. Hsu and H. S. Kwok, Appl. Phys. Lett. 50, 1782 (1987).ADSCrossRefGoogle Scholar
  25. 25.
    K. Shum, G. C. Tang, M. R. Junnarkar, and R. R. Alfano, Appl. Phys. Lett. 51, 1839, (1987).ADSCrossRefGoogle Scholar
  26. 26.
    D. W. Hall, and N. F. Borrelli, J. Opt. Soc. Am. B5, 1650 (1988).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • N. Peyghambarian
    • 1
  • S. H. Park
    • 1
  • R. A. Morgan
    • 1
  • B. Fluegel
    • 1
  • Y. Z. Hu
    • 1
  • M. Lindberg
    • 1
  • S. W. Koch
    • 1
  • D. Hulin
    • 2
  • A. Migus
    • 2
  • J. Etchepare
    • 2
  • M. Joffre
    • 2
  • G. Grillon
    • 2
  • A. Antonetti
    • 2
  • D. W. Hall
    • 3
  • N. F. Borrelli
    • 3
  1. 1.Optical Sciences CenterUniversity of ArizonaTucsonUSA
  2. 2.Ecole PolytechniqueLOA, ENSTAPalaiseauFrance
  3. 3.Corning Glass Works, CorningNew YorkUSA

Personalised recommendations