Quantum Size Effects and Photocarrier Dynamics in the Optical Nonlinearities of Semiconductor Microcrystallites

  • Ch. Flytzanis
  • D. Ricard
  • Ph. Roussignol
Part of the NATO ASI Series book series (NSSB, volume 194)


In semiconductor crystals, the electrons are delocalized over several unit cells. As a consequence many details of the interactions they are subject to are averaged out and their behavior is correctly described1 within the effective mass approximation. The averaging takes place over spherical regions of radii ae = ħ2ε/mee2 and ah = ħ2ε/mhe2 for electrons and holes respectively where me and mh are the corresponding effective masses and ε is the permittivity of the medium. If the extension of the crystal is reduced in one or more directions close to these lengths the averaging procedure breaks down and the electron is faced with the bare interactions within the confined space and its walls. On these grounds one expects size dependent effects on their properties in general and on the optical ones in particular. Such effects, also termed quantum confinement effects, constitue an area of intensive theoretical and experimental activity. The goal is certainly the design2,3 of promising nonlinear optical materials for technological applications but these effects are of fundamental interest as well since they throw new light on some physical aspects which are suppressed in the infinitely large systems.


Band Edge Quantum Confinement Nonlinear Optical Property Quantum Confinement Effect Auger Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for instance W. Ashcroft and N.D.Mermin, “Solid State Physics” Holt Saunders, Tokyo, 1981Google Scholar
  2. 2.
    See for instance “Nonlinear Optics: Materials and Devices”. Eds C. Flytzanis and J.L. Oudar, Springer Verlag, Berlin, 1986Google Scholar
  3. 3.
    See for instance “The Physics and Fabrication of Microstructures and Microdevices”. Eds MJ. Kelly and C. Weisbuch, Springer-Verlag, Berlin 1986Google Scholar
  4. 4.
    I.M. Lifshitz and V.V. Slezov, ZETF 25, 479 (1958) (Engl. Tr. SOV. Phys. JETP 25, 331 (1959)Google Scholar
  5. 5.
    N.F. Borelli, D.W. Hall, H.J. Holland and D.W. Smith, J. Appl. Phys. 61, 5399 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    B.G. Potter Jr. and J.M. Simmons, Phys. Rev. B22, 10838 (1988)ADSGoogle Scholar
  7. 7.
    J. Warnock and D.D. Awchalom, Phys. Rev. B22, 5529 (1985); Appl. Phys. Lett. 48, 425 (1986)ADSGoogle Scholar
  8. 8.
    V.V. Golubkov, A.I. Ekimov, A.A. Onushchenko, V.A. Tsekhomskii, Fiz. Khim. Stekla 7, 397 (1981)Google Scholar
  9. 9.
    T. Raj, M.I. Vucemilovic, N.M. Dimitrijevic, O.I. Micic and A.J. Nozik, Chem. Phys. Lett. 142, 305 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    P. Roussignol, D. Ricard, J. Lukasik and C. Flytzanis, J. Opt. Soc. Am. B4, 5 (1987)ADSGoogle Scholar
  11. 11.
    M. Mitsunaga, H. Shinojima, K. Kubodera, J. Opt. Soc. Am. B5, 1448 (1988)ADSGoogle Scholar
  12. 12.
    R. Rosetti, S. Nakhara and L.E. Brus, J. Chem. Phys. 79, 1086 (1983)ADSCrossRefGoogle Scholar
  13. 13.
    R. Rosetti, J.L. Ellison, J.M. Gibson and L.E. Brus, J. Chem. Phys. 80, 4464 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    H. Weiler, H.M. Schmidt, V. Koch, A. Fojtik, V. Baral, A. Henglein, W. Kunath, K. Weiss and E. Dieman, Chem. Phys. Lett., 557 (1986) and references thereinGoogle Scholar
  15. 15.
    A. Henglein, Progr. Colloid and Polymer Sci. 73, 1 (1987) and references thereinCrossRefGoogle Scholar
  16. 16.
    Y. Wang, A. Suna, W. Mahler and R. Kasowski, J. Chem. Phys. 87, 7315 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Wang and W. Mahler, Opt. Comm. 61, 233 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    T.P. Martin, Adv. Phys. 34, 216 (1985)Google Scholar
  19. 19.
    T. Itoh, T. Kurihara, J. Luminiscence 31, 120 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    A.L. Efros and A.L. Efros, Fiz. Tekh. Polypr. 16, 1209 (1982) (Engl. Tr. Sov. Phys. Semicond. 16, 772 (1982))Google Scholar
  21. 21.
    A.I. Ekhimov, A.L. Efros, A. Onushchenko, Sol. St. Comm. 56, 921 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    L.E. Brus, J. Chem. Phys. 79, 5566 (1983); ibid. 80, 4403 (1984)ADSCrossRefGoogle Scholar
  23. 23.
    L.E. Brus, IEEE, J. Quant. El. OE-22. 1909 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    A.I. Ekhimov, A.A. Onuschenko, Pisma ZETF 40, 337 (1984)Google Scholar
  25. 25.
    A.I. Ekhimov, A. Onushchenko, S.K. Shumilov, Pisma ZETF 13, 281 (1987)Google Scholar
  26. 26.
    B.S. Wherett and N.A. Higgins, Proc. Roy. Soc. (London) A379. 67 (1982)ADSGoogle Scholar
  27. 27.
    D.A.B. Miller, C.T. Seaton, M.E. Prise and S.D. Smith, Phys. Rev. Lett. 47, 197 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    K.C. Rustagi and C. Flytzanis, Opt. Lett. 9, 344 (1984)ADSCrossRefGoogle Scholar
  29. 29.
    J.C. Maxwell-Garnett, Philos. Trans. Roy. Soc. (London) 203, 385 (1904); 205, 237 (1906)ADSCrossRefGoogle Scholar
  30. 30.
    S. Schmitt Rink D.A.B. Miller and D.S. Chemla Phys. Rev. B35 8113 1987Google Scholar
  31. 31.
    K. Huang and A. Rhys, Proc. Roy. Soc. (London) A204. 406 (1959)ADSGoogle Scholar
  32. 32.
    C.B. Duke and G.D. Mahan, Phys. Rev. 139, A1965 (1965)ADSCrossRefGoogle Scholar
  33. 33.
    See for instance, A.M. Glass in the issue of Photonic Materials of MRS Bulletin, vol.XIII. Number 8, p. 16 (1988)Google Scholar
  34. 34.
    G. Bret and F. Gires, Compt. Rend. Acad. Sci. 258, 3469 (1964); Appl. Phys. Lett. 4, 175 (1964)Google Scholar
  35. 35.
    R.K. Jain and R.C. Lind, J. Opt. Soc. Am. 73, 647 (1983)ADSCrossRefGoogle Scholar
  36. 36.
    P. Roussignol, D. Ricard, K.C. Rustagi and C. Flytzanis, Opt. Comm. 55, 143 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    S.S. Yao, C. Karaguleff, A. Gabel, F. Fortenberry, C.T. Seaton and G.I. Stegemann, Appl. Phys. Lett. 46, 801 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    G.R. Olbright, N. Peygambarian, Appl. Phys. Lett. 48, 1184 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    P. Roussignol, D. Ricard, C. Flytzanis, Appl. Phys. A44, 285 (1987)ADSGoogle Scholar
  40. 40.
    F. Hache, P. Roussignol, D. Ricard and C. Flytzanis, Opt. Comm. 64, 200 (1987)ADSCrossRefGoogle Scholar
  41. 41.
    G.R. Olbright, N. Peygambarian, S.W. Koch and L. Banyai, Opt. Lett. 12, 413 (1987)ADSCrossRefGoogle Scholar
  42. 42.
    M. Nuss, W. Zinth and W. Kaiser, Appl. Phys. Lett. 49, 1717 (1986)ADSCrossRefGoogle Scholar
  43. 43.
    F. de Rougemont, R. Frey, P. Roussignol, D. Ricard and C. Flytzanis, Appl. Phys. Lett. 50, 1619 (1987)ADSCrossRefGoogle Scholar
  44. 44.
    P. Roussignol, M. Kull, D. Ricard, F. de Rougemont, R. Frey and C. Flytzanis, Appl. Phys. Lett. 51, 1882 (1987)ADSCrossRefGoogle Scholar
  45. 45.
    A.I. Ekhimov and A.A. Onushenko, JETP 34, 345 (1981); 40, 1137 (1984)Google Scholar
  46. 46.
    J.M. Hayes, J.K. Gillie, D. Tang and G.J. Small, Biochimica and Biophysica Acta 932. 287 (1988)CrossRefGoogle Scholar
  47. 47.
    P. Roussignol, D. Ricard, C. Flytzanis and N. Neuroth (accepted for publication)Google Scholar
  48. 48.
    See the contributions of D. Ricard and of C. Flytzanis et al in Refs 2 and 3 respectivelyGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Ch. Flytzanis
    • 1
  • D. Ricard
    • 1
  • Ph. Roussignol
    • 1
  1. 1.Laboratoire d’Optique Quantique du C.N.R.S.Ecole PolytechniquePalaiseauFrance

Personalised recommendations