Advertisement

Coherent Nonlinear Edge Dynamics in Semiconductor Quantum Wells

  • I. Balslev
  • A. Stahl
Part of the NATO ASI Series book series (NSSB, volume 194)

Abstract

The dynamics of nonlinear optical effects involving excitonic resonances has in a number of cases been successfully described by two- or three-level models. In this paper it is shown how these few-level models can be derived from a general two-band density matrix theory. As a particularly instructive example, the resonant Stark effect in a quantum well is discussed in detail.

Keywords

Stark Effect Nonlinear Optical Effect Wave Limit Excitonic Resonance Density Matrix Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.Y. Bigot and B. Hönerlage, Phys. Stat. Sol. (b), 121, 649 (1984)Google Scholar
  2. 2.
    L. Schultheis, J. Kühl, A. Honold, C. W. Tu, Phys. Rev. Lett. 57, 1635 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    J. M. Hvam, I. Balslev, B. Hönerlage, Europhys. Lett. 4, 839 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    D. Fröhlich, R. Wille, W. Schlapp and G. Weimann, Phys. Rev. Lett. 59, 1748 (1987)ADSCrossRefGoogle Scholar
  5. 6.
    I. Balslev, A. Stahl, Solid State Commun. 67, 85 (1988)ADSCrossRefGoogle Scholar
  6. 7.
    A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoc, Phys. Rev. Lett. 56, 2748 (1986)ADSCrossRefGoogle Scholar
  7. 8.
    A. Von Lehmen, D. S. Chemla, J. E. Zucker, J. P. Heritage, Opt. Lett. 11, 609 (1986)ADSCrossRefGoogle Scholar
  8. 9.
    A. Stahl, I. Balslev; “Electrodynamics of the Semiconductor Band Edge”, Springer Tracts in Modern Phys. Vol. 110, Springer, Berlin 1987Google Scholar
  9. 10.
    A. Stahl, Z. Physik B 72, 371 (1988)ADSGoogle Scholar
  10. 11.
    R. J. Elliott, Phys. Rev. 108, 1384 (1957)ADSCrossRefGoogle Scholar
  11. 12.
    J. J. Hopfield, D. G. Thomas, Phys. Rev. 132, 563 (1963)ADSCrossRefGoogle Scholar
  12. 13.
    Ref. 9, Appendix EGoogle Scholar
  13. 14.
    I. Balslev, A. Stahl, to be published in Phys. Stat. Sol. (b) (1988)Google Scholar
  14. 15.
    R. Wille, Dissertation, Universität Dortmund (1988)Google Scholar
  15. 16.
    R. Loudon, “The Quantum Theory of Light”, Claredon Press, Oxford, 1973Google Scholar
  16. 17.
    S. Schmitt-Rink, D. S. Chemla, Phys. Rev. Lett. 57, 2752 (1986)ADSCrossRefGoogle Scholar
  17. 18.
    J. F. Müller, R. Mewis, H. Haug, Z. Phys. B69, 231 (1987)ADSCrossRefGoogle Scholar
  18. 19.
    S. Schmitt-Rink, D. S. Chemla and H. Haug, Phys. Rev. B 37, 941 (1988)Google Scholar
  19. 20.
    H. Haug, S. Schmitt-Rink, Prog. Quant. Electr. 9, 3 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • I. Balslev
    • 1
  • A. Stahl
    • 1
    • 2
  1. 1.Fysisk InstitutOdense UniversitetOdense MDenmark
  2. 2.RWTH AachenInstitut für Theoretische PhysikAachen, BRDGermany

Personalised recommendations