Stationary Solutions for the Excitonic Optical Stark Effect in Two and Three Dimensional Semiconductors

  • H. Haug
  • C. Ell
  • J. F. Müller
  • K. El Sayed
Part of the NATO ASI Series book series (NSSB, volume 194)


Band-edge absorption spectra for a probe beam under the action of a nonresonant pump beam are calculated and analyzed within a stationary Hartree-Fock theory. Due to many-body interactions one obtains an exciton optical Stark shift with an approximately constant (2d) or slightly increasing (3d) exciton oscillator strength in agreement with several recent experiments and in striking contrast to corresponding atomic observations. Apparently deviating results of earlier semiconductor experiments were partly caused by dynamical effects and partly by the presence of real excitations.


Oscillator Strength Pump Field Small Detuning Dimensional Semiconductor Phase Space Filling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W.T. Masselink, and H. Morkoc, Phys. Rev. Lett. 56, 2748 (1986)ADSCrossRefGoogle Scholar
  2. [2]
    A. von Lehmen, D.S. Chemla, J.E. Zucker, and J.P. Heritage, Opt. Lett. 11, 609 (1986)ADSCrossRefGoogle Scholar
  3. [3]
    M. Joffre, D. Hulin, and A. Antonetti, J. de Physique C5, 537 (1987)Google Scholar
  4. [4]
    See e.g. I. Abram, JOSA B2, 1204 (1985)ADSGoogle Scholar
  5. [5]
    H. Haug, and S. Schmitt-Rink, Prog. Quant. Electron. 9, 3 (1984)ADSCrossRefGoogle Scholar
  6. [6]
    S. Schmitt-Rink, and D.S. Chemla, Phys. Rev. Lett. 57, 2752 (1986)ADSCrossRefGoogle Scholar
  7. [7]
    See e.g. the chapters by H. Haug p. 53 and W. Schäfer p. 133 in Optical Nonlinearities and Instabilities in Semiconductors, ed. H. Haug, Academic Press, New York (1988)Google Scholar
  8. [8]
    S. Schmitt-Rink, D.S. Chemla, and H. Haug, Phys. Rev. B37, 941 (1988)ADSGoogle Scholar
  9. [9]
    R. Zimmermann, Phys. Stat. Sol.(b) 146, 545 (1988)ADSCrossRefGoogle Scholar
  10. [10]
    C. Ell, J.F. Müller, K. El Sayed, L. Banyai, and H. Haug, Phys. stat. sol. b, to be publishedGoogle Scholar
  11. [11]
    M. Combescot and R. Combescot, Phys. Rev. Lett. 61, 117 (1988). As shown in a comment by S. Schmitt-Rink this paper does not contain new and different results compared to earlier theories. For unbound biexcitons their result is identical to that of refs. [6,8], for bound biexcitons it is identical to that given in refs. [4] and [5].ADSCrossRefGoogle Scholar
  12. [12]
    B.R. Mollow, Phys. Rev. A5, 2217 (1972)ADSGoogle Scholar
  13. [13]
    S. Schmitt-Rink, D.S. Chemla, and D.A.B. Miller, Phys. Rev. B32, 6601 (1985)ADSGoogle Scholar
  14. [14]
    H. Haug, Z. Physik B24, 351 (1976)Google Scholar
  15. [15]
    A. Bobreysheva, V.T. Zyukov and S.I. Beryl, Phys. Stat. Sol. b 101, 69 (1980)ADSCrossRefGoogle Scholar
  16. [16]
    W. H. Knox, J.B. Stark, D.S. Chemla, and D.A.B. Miller, to be publishedGoogle Scholar
  17. [17]
    N. Peyghambarian, S.W. Koch, M. Lindberg, B. Fluegel, and M. Joffre, to be publishedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • H. Haug
    • 1
  • C. Ell
    • 1
  • J. F. Müller
    • 1
  • K. El Sayed
    • 1
  1. 1.Institut für Theoretische PhysikUniversität FrankfurtFrankfurt, am MainGermany

Personalised recommendations